A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces
Annales Polonici Mathematici, Tome 56 (1991) no. 3, pp. 303-309
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It follows easily from a result of Lindenstrauss that, for any real twodimensional subspace v of L¹, the relative projection constant λ(v;L¹) of v equals its (absolute) projection constant $λ(v) = sup_X λ(v;X)$. The purpose of this paper is to recapture this result by exhibiting a simple formula for a subspace V contained in $L^∞(ν)$ and isometric to v and a projection $P_∞$ from C ⊕ V onto V such that $∥P_∞∥ = ∥P₁∥$, where P₁ is a minimal projection from L¹(ν) onto v. Specifically, if $P₁ = ∑_{i=1}^2 U_i ⊗ v_i$, then $P_∞ = ∑_{i=1}^2 u_i ⊗ V_i$, where $dV_i = 2v_i dν$ and $dU_i = -2u_i dν$.
Keywords:
maximal overspace, two-dimensional spaces
Affiliations des auteurs :
B. Chalmers 1 ; F. Metcalf 1
@article{10_4064_ap_56_3_303_309,
author = {B. Chalmers and F. Metcalf},
title = {A simple formula showing {L{\textonesuperior}} is a maximal overspace for two-dimensional real spaces},
journal = {Annales Polonici Mathematici},
pages = {303--309},
year = {1991},
volume = {56},
number = {3},
doi = {10.4064/ap-56-3-303-309},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-3-303-309/}
}
TY - JOUR AU - B. Chalmers AU - F. Metcalf TI - A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces JO - Annales Polonici Mathematici PY - 1991 SP - 303 EP - 309 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-3-303-309/ DO - 10.4064/ap-56-3-303-309 LA - en ID - 10_4064_ap_56_3_303_309 ER -
%0 Journal Article %A B. Chalmers %A F. Metcalf %T A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces %J Annales Polonici Mathematici %D 1991 %P 303-309 %V 56 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-3-303-309/ %R 10.4064/ap-56-3-303-309 %G en %F 10_4064_ap_56_3_303_309
B. Chalmers; F. Metcalf. A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces. Annales Polonici Mathematici, Tome 56 (1991) no. 3, pp. 303-309. doi: 10.4064/ap-56-3-303-309
Cité par Sources :