Equivariant maps of joins of finite G-sets and an application to critical point theory
Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 195-211
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A lower estimate is proved for the number of critical orbits and critical values of a G-invariant C¹ function $f:S^n → ℝ$, where G is a finite nontrivial group acting freely and orthogonally on $ℝ^{n+1} \ {0}$. Neither Morse theory nor the minimax method is applied. The proofs are based on a general version of Borsuk's Antipodal Theorem for equivariant maps of joins of G-sets.
Keywords:
join, group actions, Borsuk's Antipodal Theorem, critical points
Affiliations des auteurs :
Danuta Rozpłoch-Nowakowska 1
@article{10_4064_ap_56_2_195_211,
author = {Danuta Rozp{\l}och-Nowakowska},
title = {Equivariant maps of joins of finite {G-sets} and an application to critical point theory},
journal = {Annales Polonici Mathematici},
pages = {195--211},
year = {1991},
volume = {56},
number = {2},
doi = {10.4064/ap-56-2-195-211},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-195-211/}
}
TY - JOUR AU - Danuta Rozpłoch-Nowakowska TI - Equivariant maps of joins of finite G-sets and an application to critical point theory JO - Annales Polonici Mathematici PY - 1991 SP - 195 EP - 211 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-195-211/ DO - 10.4064/ap-56-2-195-211 LA - en ID - 10_4064_ap_56_2_195_211 ER -
%0 Journal Article %A Danuta Rozpłoch-Nowakowska %T Equivariant maps of joins of finite G-sets and an application to critical point theory %J Annales Polonici Mathematici %D 1991 %P 195-211 %V 56 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-195-211/ %R 10.4064/ap-56-2-195-211 %G en %F 10_4064_ap_56_2_195_211
Danuta Rozpłoch-Nowakowska. Equivariant maps of joins of finite G-sets and an application to critical point theory. Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 195-211. doi: 10.4064/ap-56-2-195-211
Cité par Sources :