Classical solutions of hyperbolic partial differential equations with implicit mixed derivative
Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 163-178.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let f be a continuous function from $[0,a] × [0,β] × (ℝ^n)⁴$ into $ℝ^n$. Given $u₀,v₀ ∈ C⁰([0,β],ℝ^n)$, with f(0, x, ∫_0^x u₀(s)ds, ∫_0^x v₀(s)ds, u₀(x), v₀(x)) = v₀(x) for every x ∈ [0,β], consider the problem (P) { ∂²z/(∂t∂x) = f(t, x, z, ∂z/∂t, ∂z/∂x, ∂²z/(∂t∂x)), $z(t,0) = ϑ_{ℝ^n}$, $z(0,x)=∫_0^x u₀(s)ds$, ∂²z(0,x)/(∂t∂x) = v₀(x). In this paper we prove that, under suitable assumptions, problem (P) has at least one classical solution that is local in the first variable and global in the other. As a consequence, we obtain a generalization of a result by P. Hartman and A. Wintner ([4], Theorem 1).
DOI : 10.4064/ap-56-2-163-178
Keywords: hyperbolic equation, implicit mixed derivative, classical solution

Salvatore Marano 1

1
@article{10_4064_ap_56_2_163_178,
     author = {Salvatore Marano},
     title = {Classical solutions of hyperbolic partial differential equations with implicit mixed derivative},
     journal = {Annales Polonici Mathematici},
     pages = {163--178},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1991},
     doi = {10.4064/ap-56-2-163-178},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-163-178/}
}
TY  - JOUR
AU  - Salvatore Marano
TI  - Classical solutions of hyperbolic partial differential equations with implicit mixed derivative
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 163
EP  - 178
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-163-178/
DO  - 10.4064/ap-56-2-163-178
LA  - en
ID  - 10_4064_ap_56_2_163_178
ER  - 
%0 Journal Article
%A Salvatore Marano
%T Classical solutions of hyperbolic partial differential equations with implicit mixed derivative
%J Annales Polonici Mathematici
%D 1991
%P 163-178
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-163-178/
%R 10.4064/ap-56-2-163-178
%G en
%F 10_4064_ap_56_2_163_178
Salvatore Marano. Classical solutions of hyperbolic partial differential equations with implicit mixed derivative. Annales Polonici Mathematici, Tome 56 (1991) no. 2, pp. 163-178. doi : 10.4064/ap-56-2-163-178. http://geodesic.mathdoc.fr/articles/10.4064/ap-56-2-163-178/

Cité par Sources :