A note on integral representation of Feller kernels
Annales Polonici Mathematici, Tome 56 (1991) no. 1, pp. 93-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider integral representations of Feller probability kernels from a Tikhonov space X into a Hausdorff space Y by continuous functions from X into Y. From the existence of such a representation for every kernel it follows that the space X has to be 0-dimensional. Moreover, both types of representations coincide in the metrizable case when in addition X is compact and Y is complete. It is also proved that the representation of a single kernel is equivalent to the existence of some non-direct product measure on the product space $Y^ℕ$.
DOI : 10.4064/ap-56-1-93-96
Keywords: Feller kernel, integral representation

R. Rębowski 1

1
@article{10_4064_ap_56_1_93_96,
     author = {R. R\k{e}bowski},
     title = {A note on integral representation of {Feller} kernels},
     journal = {Annales Polonici Mathematici},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1991},
     doi = {10.4064/ap-56-1-93-96},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-93-96/}
}
TY  - JOUR
AU  - R. Rębowski
TI  - A note on integral representation of Feller kernels
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 93
EP  - 96
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-93-96/
DO  - 10.4064/ap-56-1-93-96
LA  - en
ID  - 10_4064_ap_56_1_93_96
ER  - 
%0 Journal Article
%A R. Rębowski
%T A note on integral representation of Feller kernels
%J Annales Polonici Mathematici
%D 1991
%P 93-96
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-93-96/
%R 10.4064/ap-56-1-93-96
%G en
%F 10_4064_ap_56_1_93_96
R. Rębowski. A note on integral representation of Feller kernels. Annales Polonici Mathematici, Tome 56 (1991) no. 1, pp. 93-96. doi : 10.4064/ap-56-1-93-96. http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-93-96/

Cité par Sources :