Injective endomorphisms of algebraic and analytic sets
Annales Polonici Mathematici, Tome 56 (1991) no. 1, pp. 29-35
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove that every injective endomorphism of an affine algebraic variety over an algebraically closed field of characteristic zero is an automorphism. We also construct an analytic curve in ℂ⁶ and its holomorphic bijection which is not a biholomorphism.
@article{10_4064_ap_56_1_29_35,
     author = {S{\l}awomir Cynk and Kamil Rusek},
     title = {Injective endomorphisms of algebraic and analytic sets},
     journal = {Annales Polonici Mathematici},
     pages = {29--35},
     year = {1991},
     volume = {56},
     number = {1},
     doi = {10.4064/ap-56-1-29-35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-29-35/}
}
TY  - JOUR
AU  - Sławomir Cynk
AU  - Kamil Rusek
TI  - Injective endomorphisms of algebraic and analytic sets
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 29
EP  - 35
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-29-35/
DO  - 10.4064/ap-56-1-29-35
LA  - en
ID  - 10_4064_ap_56_1_29_35
ER  - 
%0 Journal Article
%A Sławomir Cynk
%A Kamil Rusek
%T Injective endomorphisms of algebraic and analytic sets
%J Annales Polonici Mathematici
%D 1991
%P 29-35
%V 56
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-29-35/
%R 10.4064/ap-56-1-29-35
%G en
%F 10_4064_ap_56_1_29_35
Sławomir Cynk; Kamil Rusek. Injective endomorphisms of algebraic and analytic sets. Annales Polonici Mathematici, Tome 56 (1991) no. 1, pp. 29-35. doi: 10.4064/ap-56-1-29-35

Cité par Sources :