Injective endomorphisms of algebraic and analytic sets
Annales Polonici Mathematici, Tome 56 (1991) no. 1, pp. 29-35
We prove that every injective endomorphism of an affine algebraic variety over an algebraically closed field of characteristic zero is an automorphism. We also construct an analytic curve in ℂ⁶ and its holomorphic bijection which is not a biholomorphism.
@article{10_4064_ap_56_1_29_35,
author = {S{\l}awomir Cynk and Kamil Rusek},
title = {Injective endomorphisms of algebraic and analytic sets},
journal = {Annales Polonici Mathematici},
pages = {29--35},
year = {1991},
volume = {56},
number = {1},
doi = {10.4064/ap-56-1-29-35},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-29-35/}
}
TY - JOUR AU - Sławomir Cynk AU - Kamil Rusek TI - Injective endomorphisms of algebraic and analytic sets JO - Annales Polonici Mathematici PY - 1991 SP - 29 EP - 35 VL - 56 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-29-35/ DO - 10.4064/ap-56-1-29-35 LA - en ID - 10_4064_ap_56_1_29_35 ER -
Sławomir Cynk; Kamil Rusek. Injective endomorphisms of algebraic and analytic sets. Annales Polonici Mathematici, Tome 56 (1991) no. 1, pp. 29-35. doi: 10.4064/ap-56-1-29-35
Cité par Sources :