Injective endomorphisms of algebraic and analytic sets
Annales Polonici Mathematici, Tome 56 (1991) no. 1, pp. 29-35
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every injective endomorphism of an affine algebraic variety over an algebraically closed field of characteristic zero is an automorphism. We also construct an analytic curve in ℂ⁶ and its holomorphic bijection which is not a biholomorphism.
Affiliations des auteurs :
Sławomir Cynk 1 ; Kamil Rusek 1
@article{10_4064_ap_56_1_29_35,
author = {S{\l}awomir Cynk and Kamil Rusek},
title = {Injective endomorphisms of algebraic and analytic sets},
journal = {Annales Polonici Mathematici},
pages = {29--35},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {1991},
doi = {10.4064/ap-56-1-29-35},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-29-35/}
}
TY - JOUR AU - Sławomir Cynk AU - Kamil Rusek TI - Injective endomorphisms of algebraic and analytic sets JO - Annales Polonici Mathematici PY - 1991 SP - 29 EP - 35 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-56-1-29-35/ DO - 10.4064/ap-56-1-29-35 LA - en ID - 10_4064_ap_56_1_29_35 ER -
Sławomir Cynk; Kamil Rusek. Injective endomorphisms of algebraic and analytic sets. Annales Polonici Mathematici, Tome 56 (1991) no. 1, pp. 29-35. doi: 10.4064/ap-56-1-29-35
Cité par Sources :