A geometric approach to the Jacobian Conjecture in ℂ²
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 95-101.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set $g^{-1}(0)$ (resp. $f^{-1}(0)$), then (f,g) is bijective.
DOI : 10.4064/ap-55-1-95-101

Ludwik Drużkowski 1

1
@article{10_4064_ap_55_1_95_101,
     author = {Ludwik Dru\.zkowski},
     title = {A geometric approach to the {Jacobian} {Conjecture} in {\ensuremath{\mathbb{C}}{\texttwosuperior}}},
     journal = {Annales Polonici Mathematici},
     pages = {95--101},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1991},
     doi = {10.4064/ap-55-1-95-101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-95-101/}
}
TY  - JOUR
AU  - Ludwik Drużkowski
TI  - A geometric approach to the Jacobian Conjecture in ℂ²
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 95
EP  - 101
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-95-101/
DO  - 10.4064/ap-55-1-95-101
LA  - en
ID  - 10_4064_ap_55_1_95_101
ER  - 
%0 Journal Article
%A Ludwik Drużkowski
%T A geometric approach to the Jacobian Conjecture in ℂ²
%J Annales Polonici Mathematici
%D 1991
%P 95-101
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-95-101/
%R 10.4064/ap-55-1-95-101
%G en
%F 10_4064_ap_55_1_95_101
Ludwik Drużkowski. A geometric approach to the Jacobian Conjecture in ℂ². Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 95-101. doi : 10.4064/ap-55-1-95-101. http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-95-101/

Cité par Sources :