A geometric approach to the Jacobian Conjecture in ℂ²
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 95-101
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set $g^{-1}(0)$ (resp. $f^{-1}(0)$), then (f,g) is bijective.
@article{10_4064_ap_55_1_95_101,
author = {Ludwik Dru\.zkowski},
title = {A geometric approach to the {Jacobian} {Conjecture} in {\ensuremath{\mathbb{C}}{\texttwosuperior}}},
journal = {Annales Polonici Mathematici},
pages = {95--101},
year = {1991},
volume = {55},
number = {1},
doi = {10.4064/ap-55-1-95-101},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-95-101/}
}
TY - JOUR AU - Ludwik Drużkowski TI - A geometric approach to the Jacobian Conjecture in ℂ² JO - Annales Polonici Mathematici PY - 1991 SP - 95 EP - 101 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-95-101/ DO - 10.4064/ap-55-1-95-101 LA - en ID - 10_4064_ap_55_1_95_101 ER -
Ludwik Drużkowski. A geometric approach to the Jacobian Conjecture in ℂ². Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 95-101. doi: 10.4064/ap-55-1-95-101
Cité par Sources :