On a class of starlike functions defined in a halfplane
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 81-86.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let D = {z: Re z 0} and let S*(D) be the class of univalent functions normalized by the conditions $lim_{D ∋ z → ∞}(f(z) - z) = a$, a a finite complex number, 0 ∉ f(D), and mapping D onto a domain f(D) starlike with respect to the exterior point w = 0. Some estimates for |f(z)| in the class S*(D) are derived. An integral formula for f is also given.
DOI : 10.4064/ap-55-1-81-86

G. Dimkov 1 ; J. Stankiewicz 1 ; Z. Stankiewicz 1

1
@article{10_4064_ap_55_1_81_86,
     author = {G. Dimkov and J. Stankiewicz and Z. Stankiewicz},
     title = {On a class of starlike functions defined in a halfplane},
     journal = {Annales Polonici Mathematici},
     pages = {81--86},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1991},
     doi = {10.4064/ap-55-1-81-86},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-81-86/}
}
TY  - JOUR
AU  - G. Dimkov
AU  - J. Stankiewicz
AU  - Z. Stankiewicz
TI  - On a class of starlike functions defined in a halfplane
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 81
EP  - 86
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-81-86/
DO  - 10.4064/ap-55-1-81-86
LA  - en
ID  - 10_4064_ap_55_1_81_86
ER  - 
%0 Journal Article
%A G. Dimkov
%A J. Stankiewicz
%A Z. Stankiewicz
%T On a class of starlike functions defined in a halfplane
%J Annales Polonici Mathematici
%D 1991
%P 81-86
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-81-86/
%R 10.4064/ap-55-1-81-86
%G en
%F 10_4064_ap_55_1_81_86
G. Dimkov; J. Stankiewicz; Z. Stankiewicz. On a class of starlike functions defined in a halfplane. Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 81-86. doi : 10.4064/ap-55-1-81-86. http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-81-86/

Cité par Sources :