New cases of equality between p-module and p-capacity
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 37-56
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let E₀, E₁ be two subsets of the closure D̅ of a domain D of the Euclidean n-space $ℝ^n$ and Γ(E₀,E₁,D) the family of arcs joining E₀ to E₁ in D. We establish new cases of equality $M_pΓ(E₀,E₁,D) = cap_p(E₀,E₁,D)$, where $M_pΓ(E₀,E₁,D)$ is the p-module of the arc family Γ(E₀,E₁,D), while $cap_p(E₀,E₁,D)$ is the p-capacity of E₀,E₁ relative to D and p > 1. One of these cases is when p = n, E̅₀ ∩ E̅₁ = ∅, $E_i = E'_i ∪ E''_i ∪ E'''_i ∪ F_i$, $E'_i$ is inaccessible from D by rectifiable arcs, $E''_i$ is open relative to D̅ or to the boundary ∂D of D, $E'''_i$ is at most countable, $F_i$ is closed (i = 0,1) and D is bounded and m-smooth on (F₀ ∪ F₁) ∩ ∂D.
Keywords:
p-capacity, p-module
Affiliations des auteurs :
Petru Caraman 1
@article{10_4064_ap_55_1_37_56,
author = {Petru Caraman},
title = {New cases of equality between p-module and p-capacity},
journal = {Annales Polonici Mathematici},
pages = {37--56},
year = {1991},
volume = {55},
number = {1},
doi = {10.4064/ap-55-1-37-56},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-37-56/}
}
Petru Caraman. New cases of equality between p-module and p-capacity. Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 37-56. doi: 10.4064/ap-55-1-37-56
Cité par Sources :