On roots of the automorphism group of a circular domain in $ℂ^n$
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 269-276.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the properties of the group Aut(D) of all biholomorphic transformations of a bounded circular domain D in $ℂ^n$ containing the origin. We characterize the set of all possible roots for the Lie algebra of Aut(D). There exists an n-element set P such that any root is of the form α or -α or α-β for suitable α,β ∈ P.
DOI : 10.4064/ap-55-1-269-276
Keywords: circular domain, automorphism group, maximal torus, Lie algebra, adjoint representation, root, root subspace

Jan Myszewski 1

1
@article{10_4064_ap_55_1_269_276,
     author = {Jan Myszewski},
     title = {On roots of the automorphism group of a circular domain in $\ensuremath{\mathbb{C}}^n$},
     journal = {Annales Polonici Mathematici},
     pages = {269--276},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1991},
     doi = {10.4064/ap-55-1-269-276},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-269-276/}
}
TY  - JOUR
AU  - Jan Myszewski
TI  - On roots of the automorphism group of a circular domain in $ℂ^n$
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 269
EP  - 276
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-269-276/
DO  - 10.4064/ap-55-1-269-276
LA  - en
ID  - 10_4064_ap_55_1_269_276
ER  - 
%0 Journal Article
%A Jan Myszewski
%T On roots of the automorphism group of a circular domain in $ℂ^n$
%J Annales Polonici Mathematici
%D 1991
%P 269-276
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-269-276/
%R 10.4064/ap-55-1-269-276
%G en
%F 10_4064_ap_55_1_269_276
Jan Myszewski. On roots of the automorphism group of a circular domain in $ℂ^n$. Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 269-276. doi : 10.4064/ap-55-1-269-276. http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-269-276/

Cité par Sources :