Jung's type theorem for polynomial transformations of ℂ²
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 207-212
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form $x^m y^n$ + terms of degree m+n.
@article{10_4064_ap_55_1_207_212,
author = {S{\l}awomir Ko{\l}odziej},
title = {Jung's type theorem for polynomial transformations of {\ensuremath{\mathbb{C}}{\texttwosuperior}}},
journal = {Annales Polonici Mathematici},
pages = {207--212},
year = {1991},
volume = {55},
number = {1},
doi = {10.4064/ap-55-1-207-212},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-207-212/}
}
TY - JOUR AU - Sławomir Kołodziej TI - Jung's type theorem for polynomial transformations of ℂ² JO - Annales Polonici Mathematici PY - 1991 SP - 207 EP - 212 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-207-212/ DO - 10.4064/ap-55-1-207-212 LA - en ID - 10_4064_ap_55_1_207_212 ER -
Sławomir Kołodziej. Jung's type theorem for polynomial transformations of ℂ². Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 207-212. doi: 10.4064/ap-55-1-207-212
Cité par Sources :