Jung's type theorem for polynomial transformations of ℂ²
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 207-212
We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form $x^m y^n$ + terms of degree m+n.
@article{10_4064_ap_55_1_207_212,
author = {S{\l}awomir Ko{\l}odziej},
title = {Jung's type theorem for polynomial transformations of {\ensuremath{\mathbb{C}}{\texttwosuperior}}},
journal = {Annales Polonici Mathematici},
pages = {207--212},
year = {1991},
volume = {55},
number = {1},
doi = {10.4064/ap-55-1-207-212},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-207-212/}
}
TY - JOUR AU - Sławomir Kołodziej TI - Jung's type theorem for polynomial transformations of ℂ² JO - Annales Polonici Mathematici PY - 1991 SP - 207 EP - 212 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-207-212/ DO - 10.4064/ap-55-1-207-212 LA - en ID - 10_4064_ap_55_1_207_212 ER -
Sławomir Kołodziej. Jung's type theorem for polynomial transformations of ℂ². Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 207-212. doi: 10.4064/ap-55-1-207-212
Cité par Sources :