Weil's formulae and multiplicity
Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 103-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The integral representation for the multiplicity of an isolated zero of a holomorphic mapping $f : (ℂ^n,0) → (ℂ^n,0)$ by means of Weil's formulae is obtained.
DOI : 10.4064/ap-55-1-103-108

Maria Frontczak 1 ; Andrzej Miodek 1

1
@article{10_4064_ap_55_1_103_108,
     author = {Maria Frontczak and Andrzej Miodek},
     title = {Weil's formulae and multiplicity},
     journal = {Annales Polonici Mathematici},
     pages = {103--108},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1991},
     doi = {10.4064/ap-55-1-103-108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-103-108/}
}
TY  - JOUR
AU  - Maria Frontczak
AU  - Andrzej Miodek
TI  - Weil's formulae and multiplicity
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 103
EP  - 108
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-103-108/
DO  - 10.4064/ap-55-1-103-108
LA  - en
ID  - 10_4064_ap_55_1_103_108
ER  - 
%0 Journal Article
%A Maria Frontczak
%A Andrzej Miodek
%T Weil's formulae and multiplicity
%J Annales Polonici Mathematici
%D 1991
%P 103-108
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-103-108/
%R 10.4064/ap-55-1-103-108
%G en
%F 10_4064_ap_55_1_103_108
Maria Frontczak; Andrzej Miodek. Weil's formulae and multiplicity. Annales Polonici Mathematici, Tome 55 (1991) no. 1, pp. 103-108. doi : 10.4064/ap-55-1-103-108. http://geodesic.mathdoc.fr/articles/10.4064/ap-55-1-103-108/

Cité par Sources :