Norm and Taylor coefficients estimates of holomorphic functions in balls
Annales Polonici Mathematici, Tome 54 (1991) no. 3, pp. 271-297.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A classical result of Hardy and Littlewood states that if $f(z) = ∑_{m=0}^{∞} a_m z^m$ is in $H^p$, 0 p ≤ 2, of the unit disk of ℂ, then $∑_{m=0}^{∞} (m+1)^{p-2}|a_m|^p ≤ c_p ∥f∥_p^p$ where $c_p$ is a positive constant depending only on p. In this paper, we provide an extension of this result to Hardy and weighted Bergman spaces in the unit ball of $ℂ^n$, and use this extension to study some related multiplier problems in $ℂ^n$.
DOI : 10.4064/ap-54-3-271-297

Jacob Burbeam 1 ; Do Kwak 1

1
@article{10_4064_ap_54_3_271_297,
     author = {Jacob Burbeam and Do Kwak},
     title = {Norm and {Taylor} coefficients estimates of holomorphic functions in balls},
     journal = {Annales Polonici Mathematici},
     pages = {271--297},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {1991},
     doi = {10.4064/ap-54-3-271-297},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-271-297/}
}
TY  - JOUR
AU  - Jacob Burbeam
AU  - Do Kwak
TI  - Norm and Taylor coefficients estimates of holomorphic functions in balls
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 271
EP  - 297
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-271-297/
DO  - 10.4064/ap-54-3-271-297
LA  - en
ID  - 10_4064_ap_54_3_271_297
ER  - 
%0 Journal Article
%A Jacob Burbeam
%A Do Kwak
%T Norm and Taylor coefficients estimates of holomorphic functions in balls
%J Annales Polonici Mathematici
%D 1991
%P 271-297
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-271-297/
%R 10.4064/ap-54-3-271-297
%G en
%F 10_4064_ap_54_3_271_297
Jacob Burbeam; Do Kwak. Norm and Taylor coefficients estimates of holomorphic functions in balls. Annales Polonici Mathematici, Tome 54 (1991) no. 3, pp. 271-297. doi : 10.4064/ap-54-3-271-297. http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-271-297/

Cité par Sources :