The Oka-Weil theorem in topological vector spaces
Annales Polonici Mathematici, Tome 54 (1991) no. 3, pp. 255-262.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that a sequentially complete topological vector space X with a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-homogeneous norm bounded on every compact subset of X.
DOI : 10.4064/ap-54-3-255-262

Bui Tac 1

1
@article{10_4064_ap_54_3_255_262,
     author = {Bui Tac},
     title = {The {Oka-Weil} theorem in topological vector spaces},
     journal = {Annales Polonici Mathematici},
     pages = {255--262},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {1991},
     doi = {10.4064/ap-54-3-255-262},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-255-262/}
}
TY  - JOUR
AU  - Bui Tac
TI  - The Oka-Weil theorem in topological vector spaces
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 255
EP  - 262
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-255-262/
DO  - 10.4064/ap-54-3-255-262
LA  - en
ID  - 10_4064_ap_54_3_255_262
ER  - 
%0 Journal Article
%A Bui Tac
%T The Oka-Weil theorem in topological vector spaces
%J Annales Polonici Mathematici
%D 1991
%P 255-262
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-255-262/
%R 10.4064/ap-54-3-255-262
%G en
%F 10_4064_ap_54_3_255_262
Bui Tac. The Oka-Weil theorem in topological vector spaces. Annales Polonici Mathematici, Tome 54 (1991) no. 3, pp. 255-262. doi : 10.4064/ap-54-3-255-262. http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-255-262/

Cité par Sources :