Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y')
Annales Polonici Mathematici, Tome 54 (1991) no. 3, pp. 195-226.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Applying the topological transversality method of Granas and the a priori bounds technique we prove some existence results for systems of differential inclusions of the form y'' ∈ F(t,y,y'), where F is a Carathéodory multifunction and y satisfies some nonlinear boundary conditions.
DOI : 10.4064/ap-54-3-195-226
Keywords: boundary value problems, differential inclusion, topological transversality

L. Erbe 1 ; W. Krawcewicz 1

1
@article{10_4064_ap_54_3_195_226,
     author = {L. Erbe and W. Krawcewicz},
     title = {Nonlinear boundary value problems for differential inclusions y'' \ensuremath{\in} {F(t,y,y')}},
     journal = {Annales Polonici Mathematici},
     pages = {195--226},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {1991},
     doi = {10.4064/ap-54-3-195-226},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-195-226/}
}
TY  - JOUR
AU  - L. Erbe
AU  - W. Krawcewicz
TI  - Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y')
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 195
EP  - 226
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-195-226/
DO  - 10.4064/ap-54-3-195-226
LA  - en
ID  - 10_4064_ap_54_3_195_226
ER  - 
%0 Journal Article
%A L. Erbe
%A W. Krawcewicz
%T Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y')
%J Annales Polonici Mathematici
%D 1991
%P 195-226
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-195-226/
%R 10.4064/ap-54-3-195-226
%G en
%F 10_4064_ap_54_3_195_226
L. Erbe; W. Krawcewicz. Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y'). Annales Polonici Mathematici, Tome 54 (1991) no. 3, pp. 195-226. doi : 10.4064/ap-54-3-195-226. http://geodesic.mathdoc.fr/articles/10.4064/ap-54-3-195-226/

Cité par Sources :