On foliations in Sikorski differential spaces with Brouwerian leaves
Annales Polonici Mathematici, Tome 54 (1991) no. 2, pp. 179-182.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The class of locally connected and locally homeomorphically homogeneous topological spaces such that every one-to-one continuous mapping of an open subspace into the space is open has been considered. For a foliation F [3] on a Sikorski differential space M with leaves having the above properties it is proved that for some open sets U in M covering the set of all points of M the connected components of U ∩ L̲ in the topology of M coincide with the connected components in the topology of L for L∈ F.
DOI : 10.4064/ap-54-2-179-182

Włodzimierz Waliszewski 1

1
@article{10_4064_ap_54_2_179_182,
     author = {W{\l}odzimierz Waliszewski},
     title = {On foliations in {Sikorski} differential spaces with {Brouwerian} leaves},
     journal = {Annales Polonici Mathematici},
     pages = {179--182},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1991},
     doi = {10.4064/ap-54-2-179-182},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-179-182/}
}
TY  - JOUR
AU  - Włodzimierz Waliszewski
TI  - On foliations in Sikorski differential spaces with Brouwerian leaves
JO  - Annales Polonici Mathematici
PY  - 1991
SP  - 179
EP  - 182
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-179-182/
DO  - 10.4064/ap-54-2-179-182
LA  - en
ID  - 10_4064_ap_54_2_179_182
ER  - 
%0 Journal Article
%A Włodzimierz Waliszewski
%T On foliations in Sikorski differential spaces with Brouwerian leaves
%J Annales Polonici Mathematici
%D 1991
%P 179-182
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-179-182/
%R 10.4064/ap-54-2-179-182
%G en
%F 10_4064_ap_54_2_179_182
Włodzimierz Waliszewski. On foliations in Sikorski differential spaces with Brouwerian leaves. Annales Polonici Mathematici, Tome 54 (1991) no. 2, pp. 179-182. doi : 10.4064/ap-54-2-179-182. http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-179-182/

Cité par Sources :