On a one-dimensional analogue of the Smale horseshoe
Annales Polonici Mathematici, Tome 54 (1991) no. 2, pp. 147-153
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have $∫φ(T^{n}x)f(x)dx → ∫φdμ$, where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then $n^{-1}∑_{i=0}^{n-1} φ(T^{i}x) → ∫φdμ$ for Lebesgue-a.e. x.
@article{10_4064_ap_54_2_147_153,
author = {Ryszard Rudnicki},
title = {On a one-dimensional analogue of the {Smale} horseshoe},
journal = {Annales Polonici Mathematici},
pages = {147--153},
year = {1991},
volume = {54},
number = {2},
doi = {10.4064/ap-54-2-147-153},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-147-153/}
}
TY - JOUR AU - Ryszard Rudnicki TI - On a one-dimensional analogue of the Smale horseshoe JO - Annales Polonici Mathematici PY - 1991 SP - 147 EP - 153 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-147-153/ DO - 10.4064/ap-54-2-147-153 LA - en ID - 10_4064_ap_54_2_147_153 ER -
Ryszard Rudnicki. On a one-dimensional analogue of the Smale horseshoe. Annales Polonici Mathematici, Tome 54 (1991) no. 2, pp. 147-153. doi: 10.4064/ap-54-2-147-153
Cité par Sources :