Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Jerzy Gawinecki 1
@article{10_4064_ap_54_2_135_145, author = {Jerzy Gawinecki}, title = {$L^p$-$L^q${-Time} decay estimate for solution of the {Cauchy} problem for hyperbolic partial differential equations of linear thermoelasticity}, journal = {Annales Polonici Mathematici}, pages = {135--145}, publisher = {mathdoc}, volume = {54}, number = {2}, year = {1991}, doi = {10.4064/ap-54-2-135-145}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-135-145/} }
TY - JOUR AU - Jerzy Gawinecki TI - $L^p$-$L^q$-Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity JO - Annales Polonici Mathematici PY - 1991 SP - 135 EP - 145 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-135-145/ DO - 10.4064/ap-54-2-135-145 LA - en ID - 10_4064_ap_54_2_135_145 ER -
%0 Journal Article %A Jerzy Gawinecki %T $L^p$-$L^q$-Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity %J Annales Polonici Mathematici %D 1991 %P 135-145 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-135-145/ %R 10.4064/ap-54-2-135-145 %G en %F 10_4064_ap_54_2_135_145
Jerzy Gawinecki. $L^p$-$L^q$-Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity. Annales Polonici Mathematici, Tome 54 (1991) no. 2, pp. 135-145. doi : 10.4064/ap-54-2-135-145. http://geodesic.mathdoc.fr/articles/10.4064/ap-54-2-135-145/
Cité par Sources :