Piecewise convex transformations with no finite invariant measure
Annales Polonici Mathematici, Tome 54 (1991) no. 1, pp. 59-68
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Abstract. The paper concerns the problem of the existence of a finite invariant absolutely continuous measure for piecewise $C^2$-regular and convex transformations T: [0, l]→[0,1]. We show that in the case when T'(0) = 1 and T"(0) exists T does not admit such a measure. This result is complementary to the ones contained in [3] and [5].
@article{10_4064_ap_54_1_59_68,
author = {Tomasz Komorowski},
title = {Piecewise convex transformations with no finite invariant measure},
journal = {Annales Polonici Mathematici},
pages = {59--68},
year = {1991},
volume = {54},
number = {1},
doi = {10.4064/ap-54-1-59-68},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-1-59-68/}
}
TY - JOUR AU - Tomasz Komorowski TI - Piecewise convex transformations with no finite invariant measure JO - Annales Polonici Mathematici PY - 1991 SP - 59 EP - 68 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-1-59-68/ DO - 10.4064/ap-54-1-59-68 LA - en ID - 10_4064_ap_54_1_59_68 ER -
Tomasz Komorowski. Piecewise convex transformations with no finite invariant measure. Annales Polonici Mathematici, Tome 54 (1991) no. 1, pp. 59-68. doi: 10.4064/ap-54-1-59-68
Cité par Sources :