Classical boundary value problems for integrable temperatures in a $C^1$ domain
Annales Polonici Mathematici, Tome 54 (1991) no. 1, pp. 29-44
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with $C^1$-base and data in $h^1_c$, a subspace of $L^$1. We derive our results, considering the action of an adjoint operator on $B_TMOC$, a predual of $h^1_c$, and using known properties of this last space.
Affiliations des auteurs :
Anna Grimaldi Piro 1 ; Francesco Ragnedda 1
@article{10_4064_ap_54_1_29_44,
author = {Anna Grimaldi Piro and Francesco Ragnedda},
title = {Classical boundary value problems for integrable temperatures in a $C^1$ domain},
journal = {Annales Polonici Mathematici},
pages = {29--44},
year = {1991},
volume = {54},
number = {1},
doi = {10.4064/ap-54-1-29-44},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-54-1-29-44/}
}
TY - JOUR AU - Anna Grimaldi Piro AU - Francesco Ragnedda TI - Classical boundary value problems for integrable temperatures in a $C^1$ domain JO - Annales Polonici Mathematici PY - 1991 SP - 29 EP - 44 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-54-1-29-44/ DO - 10.4064/ap-54-1-29-44 LA - en ID - 10_4064_ap_54_1_29_44 ER -
%0 Journal Article %A Anna Grimaldi Piro %A Francesco Ragnedda %T Classical boundary value problems for integrable temperatures in a $C^1$ domain %J Annales Polonici Mathematici %D 1991 %P 29-44 %V 54 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-54-1-29-44/ %R 10.4064/ap-54-1-29-44 %G en %F 10_4064_ap_54_1_29_44
Anna Grimaldi Piro; Francesco Ragnedda. Classical boundary value problems for integrable temperatures in a $C^1$ domain. Annales Polonici Mathematici, Tome 54 (1991) no. 1, pp. 29-44. doi: 10.4064/ap-54-1-29-44
Cité par Sources :