Strong maximum and minimum principles for parabolic functional-differential problems with initial inequalities $u(t_0, x) \stack {≤} {(≥)}K$
Annales Polonici Mathematici, Tome 52 (1990) no. 2, pp. 187-194.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/ap-52-2-187-194

Ludwik Byszewski 1

1
@article{10_4064_ap_52_2_187_194,
     author = {Ludwik Byszewski},
     title = {Strong maximum and minimum principles for parabolic functional-differential problems with initial inequalities $u(t_0, x) \stack {\ensuremath{\leq}} {(\ensuremath{\geq})}K$},
     journal = {Annales Polonici Mathematici},
     pages = {187--194},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1990},
     doi = {10.4064/ap-52-2-187-194},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-52-2-187-194/}
}
TY  - JOUR
AU  - Ludwik Byszewski
TI  - Strong maximum and minimum principles for parabolic functional-differential problems with initial inequalities $u(t_0, x) \stack {≤} {(≥)}K$
JO  - Annales Polonici Mathematici
PY  - 1990
SP  - 187
EP  - 194
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-52-2-187-194/
DO  - 10.4064/ap-52-2-187-194
LA  - en
ID  - 10_4064_ap_52_2_187_194
ER  - 
%0 Journal Article
%A Ludwik Byszewski
%T Strong maximum and minimum principles for parabolic functional-differential problems with initial inequalities $u(t_0, x) \stack {≤} {(≥)}K$
%J Annales Polonici Mathematici
%D 1990
%P 187-194
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-52-2-187-194/
%R 10.4064/ap-52-2-187-194
%G en
%F 10_4064_ap_52_2_187_194
Ludwik Byszewski. Strong maximum and minimum principles for parabolic functional-differential problems with initial inequalities $u(t_0, x) \stack {≤} {(≥)}K$. Annales Polonici Mathematici, Tome 52 (1990) no. 2, pp. 187-194. doi : 10.4064/ap-52-2-187-194. http://geodesic.mathdoc.fr/articles/10.4064/ap-52-2-187-194/

Cité par Sources :