Asymptotic behavior of non-linear differential equations via non-standard analysis. Part III. Boundedness and monotone behavior of the equation (a(t)φ(x)x')' + c(t)f(x) = q(t)
Annales Polonici Mathematici, Tome 38 (1980) no. 2, pp. 101-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/ap-38-2-101-108

V. Komkov 1

1
@article{10_4064_ap_38_2_101_108,
     author = {V. Komkov},
     title = {Asymptotic behavior of non-linear differential equations via non-standard analysis. {Part} {III.} {Boundedness} and monotone behavior of the equation (a(t)\ensuremath{\varphi}(x)x')' + c(t)f(x) = q(t)},
     journal = {Annales Polonici Mathematici},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1980},
     doi = {10.4064/ap-38-2-101-108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-38-2-101-108/}
}
TY  - JOUR
AU  - V. Komkov
TI  - Asymptotic behavior of non-linear differential equations via non-standard analysis. Part III. Boundedness and monotone behavior of the equation (a(t)φ(x)x')' + c(t)f(x) = q(t)
JO  - Annales Polonici Mathematici
PY  - 1980
SP  - 101
EP  - 108
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-38-2-101-108/
DO  - 10.4064/ap-38-2-101-108
LA  - en
ID  - 10_4064_ap_38_2_101_108
ER  - 
%0 Journal Article
%A V. Komkov
%T Asymptotic behavior of non-linear differential equations via non-standard analysis. Part III. Boundedness and monotone behavior of the equation (a(t)φ(x)x')' + c(t)f(x) = q(t)
%J Annales Polonici Mathematici
%D 1980
%P 101-108
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-38-2-101-108/
%R 10.4064/ap-38-2-101-108
%G en
%F 10_4064_ap_38_2_101_108
V. Komkov. Asymptotic behavior of non-linear differential equations via non-standard analysis. Part III. Boundedness and monotone behavior of the equation (a(t)φ(x)x')' + c(t)f(x) = q(t). Annales Polonici Mathematici, Tome 38 (1980) no. 2, pp. 101-108. doi : 10.4064/ap-38-2-101-108. http://geodesic.mathdoc.fr/articles/10.4064/ap-38-2-101-108/

Cité par Sources :