Regular fractional iteration of convex functions
Annales Polonici Mathematici, Tome 38 (1980) no. 1, pp. 95-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The existence of a unique $C^1$ solution φ of equation (1) is proved under the condition that f: I → I is convex or concave and of class $C^1$ in I, 0 f(x) x in I*, and f'(x) > 0 in I. Here I = [0, a] or [0, a), 0 a ≤ ∞, and I* = I\ {0}.
DOI : 10.4064/ap-38-1-95-100

Marek Kuczma 1

1
@article{10_4064_ap_38_1_95_100,
     author = {Marek Kuczma},
     title = {Regular fractional iteration of convex functions},
     journal = {Annales Polonici Mathematici},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1980},
     doi = {10.4064/ap-38-1-95-100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-95-100/}
}
TY  - JOUR
AU  - Marek Kuczma
TI  - Regular fractional iteration of convex functions
JO  - Annales Polonici Mathematici
PY  - 1980
SP  - 95
EP  - 100
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-95-100/
DO  - 10.4064/ap-38-1-95-100
LA  - en
ID  - 10_4064_ap_38_1_95_100
ER  - 
%0 Journal Article
%A Marek Kuczma
%T Regular fractional iteration of convex functions
%J Annales Polonici Mathematici
%D 1980
%P 95-100
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-95-100/
%R 10.4064/ap-38-1-95-100
%G en
%F 10_4064_ap_38_1_95_100
Marek Kuczma. Regular fractional iteration of convex functions. Annales Polonici Mathematici, Tome 38 (1980) no. 1, pp. 95-100. doi : 10.4064/ap-38-1-95-100. http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-95-100/

Cité par Sources :