A new characterization of the sphere in $R^3$
Annales Polonici Mathematici, Tome 38 (1980) no. 1, pp. 47-49.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let M be a closed connected surface in $R^3$ with positive Gaussian curvature K and let $K_II$ be the curvature of its second fundamental form. It is shown that M is a sphere if $K_II = c√HK^r$, for some constants c and r, where H is the mean curvature of M.
DOI : 10.4064/ap-38-1-47-49

Thomas Hasanis 1

1
@article{10_4064_ap_38_1_47_49,
     author = {Thomas Hasanis},
     title = {A new characterization of the sphere in $R^3$},
     journal = {Annales Polonici Mathematici},
     pages = {47--49},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1980},
     doi = {10.4064/ap-38-1-47-49},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-47-49/}
}
TY  - JOUR
AU  - Thomas Hasanis
TI  - A new characterization of the sphere in $R^3$
JO  - Annales Polonici Mathematici
PY  - 1980
SP  - 47
EP  - 49
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-47-49/
DO  - 10.4064/ap-38-1-47-49
LA  - en
ID  - 10_4064_ap_38_1_47_49
ER  - 
%0 Journal Article
%A Thomas Hasanis
%T A new characterization of the sphere in $R^3$
%J Annales Polonici Mathematici
%D 1980
%P 47-49
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-47-49/
%R 10.4064/ap-38-1-47-49
%G en
%F 10_4064_ap_38_1_47_49
Thomas Hasanis. A new characterization of the sphere in $R^3$. Annales Polonici Mathematici, Tome 38 (1980) no. 1, pp. 47-49. doi : 10.4064/ap-38-1-47-49. http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-47-49/

Cité par Sources :