A new characterization of the sphere in $R^3$
Annales Polonici Mathematici, Tome 38 (1980) no. 1, pp. 47-49
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let M be a closed connected surface in $R^3$ with positive Gaussian curvature K and let $K_II$ be the curvature of its second fundamental form. It is shown that M is a sphere if $K_II = c√HK^r$, for some constants c and r, where H is the mean curvature of M.
@article{10_4064_ap_38_1_47_49,
author = {Thomas Hasanis},
title = {A new characterization of the sphere in $R^3$},
journal = {Annales Polonici Mathematici},
pages = {47--49},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1980},
doi = {10.4064/ap-38-1-47-49},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-47-49/}
}
Thomas Hasanis. A new characterization of the sphere in $R^3$. Annales Polonici Mathematici, Tome 38 (1980) no. 1, pp. 47-49. doi: 10.4064/ap-38-1-47-49
Cité par Sources :