The u-invariant of fields with 16 and 32 square classes I
Annales Polonici Mathematici, Tome 38 (1980) no. 1, pp. 1-12
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We discuss here the conjectures of Kaplansky and of Lam concerning the ii-univariant of a field of characteristic different from two. Both conjectures are shown t.o hold true for any field having at most 32 square classes.
@article{10_4064_ap_38_1_1_12,
author = {Bronis{\l}awa B{\l}aszczyk},
title = {The u-invariant of fields with 16 and 32 square classes {I}},
journal = {Annales Polonici Mathematici},
pages = {1--12},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1980},
doi = {10.4064/ap-38-1-1-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-1-12/}
}
TY - JOUR AU - Bronisława Błaszczyk TI - The u-invariant of fields with 16 and 32 square classes I JO - Annales Polonici Mathematici PY - 1980 SP - 1 EP - 12 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-38-1-1-12/ DO - 10.4064/ap-38-1-1-12 LA - en ID - 10_4064_ap_38_1_1_12 ER -
Bronisława Błaszczyk. The u-invariant of fields with 16 and 32 square classes I. Annales Polonici Mathematici, Tome 38 (1980) no. 1, pp. 1-12. doi: 10.4064/ap-38-1-1-12
Cité par Sources :