On the maximum term and maximum modulus of analytic functions represented by Dirichlet series
Annales Polonici Mathematici, Tome 28 (1973) no. 2, pp. 213-222.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/ap-28-2-213-222

Krishna Nandan 1

1
@article{10_4064_ap_28_2_213_222,
     author = {Krishna Nandan},
     title = {On the maximum term and maximum modulus of analytic functions represented by {Dirichlet} series},
     journal = {Annales Polonici Mathematici},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1973},
     doi = {10.4064/ap-28-2-213-222},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-28-2-213-222/}
}
TY  - JOUR
AU  - Krishna Nandan
TI  - On the maximum term and maximum modulus of analytic functions represented by Dirichlet series
JO  - Annales Polonici Mathematici
PY  - 1973
SP  - 213
EP  - 222
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-28-2-213-222/
DO  - 10.4064/ap-28-2-213-222
LA  - en
ID  - 10_4064_ap_28_2_213_222
ER  - 
%0 Journal Article
%A Krishna Nandan
%T On the maximum term and maximum modulus of analytic functions represented by Dirichlet series
%J Annales Polonici Mathematici
%D 1973
%P 213-222
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-28-2-213-222/
%R 10.4064/ap-28-2-213-222
%G en
%F 10_4064_ap_28_2_213_222
Krishna Nandan. On the maximum term and maximum modulus of analytic functions represented by Dirichlet series. Annales Polonici Mathematici, Tome 28 (1973) no. 2, pp. 213-222. doi : 10.4064/ap-28-2-213-222. http://geodesic.mathdoc.fr/articles/10.4064/ap-28-2-213-222/

Cité par Sources :