Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_ap_17_1_1_11, author = {B. Palczewski}, title = {On uniqueness and successive approximations in the {Darboux} problem for the equation $u_{xy} = f(x, y, u, u_x, u_y, \ensuremath{\int}^x_0 \ensuremath{\int}^y_0 g(x, y, s, t, u(s, t), u_s(s, t), u_t(s, t)) ds dt)$}, journal = {Annales Polonici Mathematici}, pages = {1--11}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {1965}, doi = {10.4064/ap-17-1-1-11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-17-1-1-11/} }
TY - JOUR AU - B. Palczewski TI - On uniqueness and successive approximations in the Darboux problem for the equation $u_{xy} = f(x, y, u, u_x, u_y, ∫^x_0 ∫^y_0 g(x, y, s, t, u(s, t), u_s(s, t), u_t(s, t)) ds dt)$ JO - Annales Polonici Mathematici PY - 1965 SP - 1 EP - 11 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-17-1-1-11/ DO - 10.4064/ap-17-1-1-11 LA - en ID - 10_4064_ap_17_1_1_11 ER -
%0 Journal Article %A B. Palczewski %T On uniqueness and successive approximations in the Darboux problem for the equation $u_{xy} = f(x, y, u, u_x, u_y, ∫^x_0 ∫^y_0 g(x, y, s, t, u(s, t), u_s(s, t), u_t(s, t)) ds dt)$ %J Annales Polonici Mathematici %D 1965 %P 1-11 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-17-1-1-11/ %R 10.4064/ap-17-1-1-11 %G en %F 10_4064_ap_17_1_1_11
B. Palczewski. On uniqueness and successive approximations in the Darboux problem for the equation $u_{xy} = f(x, y, u, u_x, u_y, ∫^x_0 ∫^y_0 g(x, y, s, t, u(s, t), u_s(s, t), u_t(s, t)) ds dt)$. Annales Polonici Mathematici, Tome 17 (1965) no. 1, pp. 1-11. doi : 10.4064/ap-17-1-1-11. http://geodesic.mathdoc.fr/articles/10.4064/ap-17-1-1-11/
Cité par Sources :