Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3})
Annales Polonici Mathematici, Tome 13 (1963) no. 3, pp. 267-277
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_ap_13_3_267_277,
author = {B. Palczewski},
title = {Existence and uniqueness of solutions of the {Darboux} problem for the equation ${\ensuremath{\partial}^3u \over \ensuremath{\partial}x_1 \ensuremath{\partial}x_2 \ensuremath{\partial}x_3} = {f(x_1, x_ 2, x_ 3, u, {\ensuremath{\partial}u \over \ensuremath{\partial}x_1}, {\ensuremath{\partial}u \over \ensuremath{\partial}x_2}, {\ensuremath{\partial}u \over \ensuremath{\partial}x_3}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_1 \ensuremath{\partial}x_2}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_1, \ensuremath{\partial}x_3}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_2 \ensuremath{\partial}x_3})},
journal = {Annales Polonici Mathematici},
pages = {267--277},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1963},
doi = {10.4064/ap-13-3-267-277},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/}
}
TY - JOUR
AU - B. Palczewski
TI - Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3})
JO - Annales Polonici Mathematici
PY - 1963
SP - 267
EP - 277
VL - 13
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/
DO - 10.4064/ap-13-3-267-277
LA - en
ID - 10_4064_ap_13_3_267_277
ER -
%0 Journal Article
%A B. Palczewski
%T Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3})
%J Annales Polonici Mathematici
%D 1963
%P 267-277
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/
%R 10.4064/ap-13-3-267-277
%G en
%F 10_4064_ap_13_3_267_277
B. Palczewski. Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3}). Annales Polonici Mathematici, Tome 13 (1963) no. 3, pp. 267-277. doi: 10.4064/ap-13-3-267-277
Cité par Sources :