Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_ap_13_3_267_277, author = {B. Palczewski}, title = {Existence and uniqueness of solutions of the {Darboux} problem for the equation ${\ensuremath{\partial}^3u \over \ensuremath{\partial}x_1 \ensuremath{\partial}x_2 \ensuremath{\partial}x_3} = {f(x_1, x_ 2, x_ 3, u, {\ensuremath{\partial}u \over \ensuremath{\partial}x_1}, {\ensuremath{\partial}u \over \ensuremath{\partial}x_2}, {\ensuremath{\partial}u \over \ensuremath{\partial}x_3}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_1 \ensuremath{\partial}x_2}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_1, \ensuremath{\partial}x_3}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_2 \ensuremath{\partial}x_3})}, journal = {Annales Polonici Mathematici}, pages = {267--277}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {1963}, doi = {10.4064/ap-13-3-267-277}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/} }
TY - JOUR AU - B. Palczewski TI - Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3}) JO - Annales Polonici Mathematici PY - 1963 SP - 267 EP - 277 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/ DO - 10.4064/ap-13-3-267-277 LA - en ID - 10_4064_ap_13_3_267_277 ER -
%0 Journal Article %A B. Palczewski %T Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3}) %J Annales Polonici Mathematici %D 1963 %P 267-277 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/ %R 10.4064/ap-13-3-267-277 %G en %F 10_4064_ap_13_3_267_277
B. Palczewski. Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3}). Annales Polonici Mathematici, Tome 13 (1963) no. 3, pp. 267-277. doi : 10.4064/ap-13-3-267-277. http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/
Cité par Sources :