Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3})
Annales Polonici Mathematici, Tome 13 (1963) no. 3, pp. 267-277.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/ap-13-3-267-277

B. Palczewski 1

1
@article{10_4064_ap_13_3_267_277,
     author = {B. Palczewski},
     title = {Existence and uniqueness of solutions of the {Darboux} problem for the equation ${\ensuremath{\partial}^3u \over \ensuremath{\partial}x_1 \ensuremath{\partial}x_2 \ensuremath{\partial}x_3} = {f(x_1, x_ 2, x_ 3, u, {\ensuremath{\partial}u \over \ensuremath{\partial}x_1}, {\ensuremath{\partial}u \over \ensuremath{\partial}x_2}, {\ensuremath{\partial}u \over \ensuremath{\partial}x_3}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_1 \ensuremath{\partial}x_2}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_1, \ensuremath{\partial}x_3}, {\ensuremath{\partial}^2u \over \ensuremath{\partial}x_2 \ensuremath{\partial}x_3})},
     journal = {Annales Polonici Mathematici},
     pages = {267--277},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1963},
     doi = {10.4064/ap-13-3-267-277},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/}
}
TY  - JOUR
AU  - B. Palczewski
TI  - Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3})
JO  - Annales Polonici Mathematici
PY  - 1963
SP  - 267
EP  - 277
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/
DO  - 10.4064/ap-13-3-267-277
LA  - en
ID  - 10_4064_ap_13_3_267_277
ER  - 
%0 Journal Article
%A B. Palczewski
%T Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3})
%J Annales Polonici Mathematici
%D 1963
%P 267-277
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/
%R 10.4064/ap-13-3-267-277
%G en
%F 10_4064_ap_13_3_267_277
B. Palczewski. Existence and uniqueness of solutions of the Darboux problem for the equation ${∂^3u \over ∂x_1 ∂x_2 ∂x_3} = {f(x_1, x_ 2, x_ 3, u, {∂u \over ∂x_1}, {∂u \over ∂x_2}, {∂u \over ∂x_3}, {∂^2u \over ∂x_1 ∂x_2}, {∂^2u \over ∂x_1, ∂x_3}, {∂^2u \over ∂x_2 ∂x_3}). Annales Polonici Mathematici, Tome 13 (1963) no. 3, pp. 267-277. doi : 10.4064/ap-13-3-267-277. http://geodesic.mathdoc.fr/articles/10.4064/ap-13-3-267-277/

Cité par Sources :