The length of the shortest period of rests of numbers $n^n$
Annales Polonici Mathematici, Tome 1 (1955) no. 2, pp. 360-366.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/ap-1-2-360-366

R. Hampel 1

1
@article{10_4064_ap_1_2_360_366,
     author = {R. Hampel},
     title = {The length of the shortest period of rests of numbers $n^n$},
     journal = {Annales Polonici Mathematici},
     pages = {360--366},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1955},
     doi = {10.4064/ap-1-2-360-366},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-1-2-360-366/}
}
TY  - JOUR
AU  - R. Hampel
TI  - The length of the shortest period of rests of numbers $n^n$
JO  - Annales Polonici Mathematici
PY  - 1955
SP  - 360
EP  - 366
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-1-2-360-366/
DO  - 10.4064/ap-1-2-360-366
LA  - en
ID  - 10_4064_ap_1_2_360_366
ER  - 
%0 Journal Article
%A R. Hampel
%T The length of the shortest period of rests of numbers $n^n$
%J Annales Polonici Mathematici
%D 1955
%P 360-366
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-1-2-360-366/
%R 10.4064/ap-1-2-360-366
%G en
%F 10_4064_ap_1_2_360_366
R. Hampel. The length of the shortest period of rests of numbers $n^n$. Annales Polonici Mathematici, Tome 1 (1955) no. 2, pp. 360-366. doi : 10.4064/ap-1-2-360-366. http://geodesic.mathdoc.fr/articles/10.4064/ap-1-2-360-366/

Cité par Sources :