Symmetry breaking in the minimization of the first eigenvalue for the composite clamped punctured disk
Applicationes Mathematicae, Tome 42 (2015) no. 2-3, pp. 183-191.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $D_0=\{x\in \mathbb {R}^2: 0|x|1\}$ be the unit punctured disk. We consider the first eigenvalue $\lambda _1(\rho )$ of the problem $\Delta ^2 u =\lambda \rho u$ in $D_0$ with Dirichlet boundary condition, where $\rho $ is an arbitrary function that takes only two given values $0\alpha \beta $ and is subject to the constraint $\int _{D_0}\rho \,dx=\alpha \gamma +\beta (|D_0|-\gamma )$ for a fixed $0\gamma |D_0|$. We will be concerned with the minimization problem $\rho \mapsto \lambda _1(\rho )$. We show that, under suitable conditions on $\alpha ,\ \beta $ and $\gamma $, the minimizer does not inherit the radial symmetry of the domain.
DOI : 10.4064/am42-2-5
Keywords: mathbb unit punctured disk consider first eigenvalue lambda rho problem delta lambda rho dirichlet boundary condition where rho arbitrary function takes only given values alpha beta subject constraint int rho alpha gamma beta gamma fixed gamma concerned minimization problem rho mapsto lambda rho under suitable conditions alpha beta gamma minimizer does inherit radial symmetry domain

Claudia Anedda 1 ; Fabrizio Cuccu 1

1 Mathematics and Computer Science Department University of Cagliari 09124 Cagliari (CA), Italy
@article{10_4064_am42_2_5,
     author = {Claudia Anedda and Fabrizio Cuccu},
     title = {Symmetry breaking in the minimization of the first eigenvalue for the composite clamped punctured disk},
     journal = {Applicationes Mathematicae},
     pages = {183--191},
     publisher = {mathdoc},
     volume = {42},
     number = {2-3},
     year = {2015},
     doi = {10.4064/am42-2-5},
     zbl = {1332.35236},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am42-2-5/}
}
TY  - JOUR
AU  - Claudia Anedda
AU  - Fabrizio Cuccu
TI  - Symmetry breaking in the minimization of the first eigenvalue for the composite clamped punctured disk
JO  - Applicationes Mathematicae
PY  - 2015
SP  - 183
EP  - 191
VL  - 42
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am42-2-5/
DO  - 10.4064/am42-2-5
LA  - en
ID  - 10_4064_am42_2_5
ER  - 
%0 Journal Article
%A Claudia Anedda
%A Fabrizio Cuccu
%T Symmetry breaking in the minimization of the first eigenvalue for the composite clamped punctured disk
%J Applicationes Mathematicae
%D 2015
%P 183-191
%V 42
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am42-2-5/
%R 10.4064/am42-2-5
%G en
%F 10_4064_am42_2_5
Claudia Anedda; Fabrizio Cuccu. Symmetry breaking in the minimization of the first eigenvalue for the composite clamped punctured disk. Applicationes Mathematicae, Tome 42 (2015) no. 2-3, pp. 183-191. doi : 10.4064/am42-2-5. http://geodesic.mathdoc.fr/articles/10.4064/am42-2-5/

Cité par Sources :