A unifying convergence analysis of Newton's method for twice Fréchet-differentiable operators
Applicationes Mathematicae, Tome 42 (2015) no. 1, pp. 29-56
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We provide a local as well as a semilocal convergence analysis for Newton's method using unifying hypotheses on twice Fréchet-differentiable operators in a Banach space setting. Our approach extends the applicability of Newton's method. Numerical examples are also provided.
DOI :
10.4064/am42-1-4
Keywords:
provide local semilocal convergence analysis newtons method using unifying hypotheses twice chet differentiable operators banach space setting approach extends applicability newtons method numerical examples provided
Affiliations des auteurs :
I. K. Argyros 1 ; D. González 2
@article{10_4064_am42_1_4,
author = {I. K. Argyros and D. Gonz\'alez},
title = {A unifying convergence analysis of {Newton's} method for twice {Fr\'echet-differentiable} operators},
journal = {Applicationes Mathematicae},
pages = {29--56},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2015},
doi = {10.4064/am42-1-4},
zbl = {1337.65045},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am42-1-4/}
}
TY - JOUR AU - I. K. Argyros AU - D. González TI - A unifying convergence analysis of Newton's method for twice Fréchet-differentiable operators JO - Applicationes Mathematicae PY - 2015 SP - 29 EP - 56 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am42-1-4/ DO - 10.4064/am42-1-4 LA - en ID - 10_4064_am42_1_4 ER -
%0 Journal Article %A I. K. Argyros %A D. González %T A unifying convergence analysis of Newton's method for twice Fréchet-differentiable operators %J Applicationes Mathematicae %D 2015 %P 29-56 %V 42 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am42-1-4/ %R 10.4064/am42-1-4 %G en %F 10_4064_am42_1_4
I. K. Argyros; D. González. A unifying convergence analysis of Newton's method for twice Fréchet-differentiable operators. Applicationes Mathematicae, Tome 42 (2015) no. 1, pp. 29-56. doi: 10.4064/am42-1-4
Cité par Sources :