Asymptotic stability of a linear Boltzmann-type equation
Applicationes Mathematicae, Tome 41 (2014) no. 4, pp. 323-334
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We present a new necessary and sufficient condition for the asymptotic stability of Markov operators acting on the space of signed measures. The proof is based on some special properties of the total variation norm. Our method allows us to consider the Tjon–Wu equation in a linear form. More precisely a new proof of the asymptotic stability of a stationary solution of the Tjon–Wu equation is given.
DOI :
10.4064/am41-4-3
Keywords:
present necessary sufficient condition asymptotic stability markov operators acting space signed measures proof based special properties total variation norm method allows consider tjon equation linear form precisely proof asymptotic stability stationary solution tjon equation given
Affiliations des auteurs :
Roksana Brodnicka 1 ; Henryk Gacki 1
@article{10_4064_am41_4_3,
author = {Roksana Brodnicka and Henryk Gacki},
title = {Asymptotic stability of a linear {Boltzmann-type} equation},
journal = {Applicationes Mathematicae},
pages = {323--334},
year = {2014},
volume = {41},
number = {4},
doi = {10.4064/am41-4-3},
zbl = {1321.47160},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-4-3/}
}
TY - JOUR AU - Roksana Brodnicka AU - Henryk Gacki TI - Asymptotic stability of a linear Boltzmann-type equation JO - Applicationes Mathematicae PY - 2014 SP - 323 EP - 334 VL - 41 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/am41-4-3/ DO - 10.4064/am41-4-3 LA - en ID - 10_4064_am41_4_3 ER -
Roksana Brodnicka; Henryk Gacki. Asymptotic stability of a linear Boltzmann-type equation. Applicationes Mathematicae, Tome 41 (2014) no. 4, pp. 323-334. doi: 10.4064/am41-4-3
Cité par Sources :