Three solutions for a nonlinear Neumann boundary value problem
Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 257-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann boundary-value problem involving the $p(x$)-Laplacian of the form \begin{align*} {-}\Delta_{p(x)} u+a(x)|u|^{p(x)-2}u =\mu g(x,u)\quad \text{in } \Omega, \\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu}=\lambda f(x,u) \quad \text{on } \partial\Omega. \end{align*} Our technical approach is based on the three critical points theorem due to Ricceri.
DOI : 10.4064/am41-2-13
Keywords: paper establish existence least three solutions nonlinear neumann boundary value problem involving laplacian form begin align* delta quad text omega nabla frac partial partial lambda quad text partial omega end align* technical approach based three critical points theorem due ricceri

Najib Tsouli 1 ; Omar Chakrone 1 ; Omar Darhouche 1 ; Mostafa Rahmani 1

1 Department of Mathematics University Mohamed I P.O. Box 717 Oujda 60000, Morocco
@article{10_4064_am41_2_13,
     author = {Najib Tsouli and Omar Chakrone and Omar Darhouche and Mostafa Rahmani},
     title = {Three solutions for a nonlinear {Neumann} boundary value problem},
     journal = {Applicationes Mathematicae},
     pages = {257--266},
     publisher = {mathdoc},
     volume = {41},
     number = {2-3},
     year = {2014},
     doi = {10.4064/am41-2-13},
     zbl = {1304.35295},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-2-13/}
}
TY  - JOUR
AU  - Najib Tsouli
AU  - Omar Chakrone
AU  - Omar Darhouche
AU  - Mostafa Rahmani
TI  - Three solutions for a nonlinear Neumann boundary value problem
JO  - Applicationes Mathematicae
PY  - 2014
SP  - 257
EP  - 266
VL  - 41
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am41-2-13/
DO  - 10.4064/am41-2-13
LA  - en
ID  - 10_4064_am41_2_13
ER  - 
%0 Journal Article
%A Najib Tsouli
%A Omar Chakrone
%A Omar Darhouche
%A Mostafa Rahmani
%T Three solutions for a nonlinear Neumann boundary value problem
%J Applicationes Mathematicae
%D 2014
%P 257-266
%V 41
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am41-2-13/
%R 10.4064/am41-2-13
%G en
%F 10_4064_am41_2_13
Najib Tsouli; Omar Chakrone; Omar Darhouche; Mostafa Rahmani. Three solutions for a nonlinear Neumann boundary value problem. Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 257-266. doi : 10.4064/am41-2-13. http://geodesic.mathdoc.fr/articles/10.4064/am41-2-13/

Cité par Sources :