On the spectrum of the $p$-biharmonic operator involving $p$-Hardy's inequality
Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 239-246.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper, we study the spectrum for the following eigenvalue problem with the $p$-biharmonic operator involving the Hardy term: $$\varDelta (|\varDelta u|^{p-2}\varDelta u)= \lambda \frac {|u|^{p-2}u}{\delta (x)^{2p}} \hbox { in } \varOmega , \ u\in W_0^{2,p}(\varOmega ).$$ By using the variational technique and the Hardy–Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.
DOI : 10.4064/am41-2-11
Keywords: paper study spectrum following eigenvalue problem p biharmonic operator involving hardy term vardelta vardelta p vardelta lambda frac p delta hbox varomega varomega using variational technique hardy rellich inequality prove above problem has least increasing sequence positive eigenvalues

Abdelouahed El Khalil 1 ; My Driss Morchid Alaoui 2 ; Abdelfattah Touzani 2

1 Department of Mathematics and Statistics College of Science Al-Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623, Saudi Arabia
2 Faculty of Sciences Dhar-Mahraz Department of Mathematics University Sidi Mohamed Ben Abdellah P.O. Box 1796 Atlas Fez 30000, Morocco
@article{10_4064_am41_2_11,
     author = {Abdelouahed El Khalil and My Driss Morchid Alaoui and Abdelfattah Touzani},
     title = {On the spectrum of the $p$-biharmonic operator involving $p${-Hardy's} inequality},
     journal = {Applicationes Mathematicae},
     pages = {239--246},
     publisher = {mathdoc},
     volume = {41},
     number = {2-3},
     year = {2014},
     doi = {10.4064/am41-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-2-11/}
}
TY  - JOUR
AU  - Abdelouahed El Khalil
AU  - My Driss Morchid Alaoui
AU  - Abdelfattah Touzani
TI  - On the spectrum of the $p$-biharmonic operator involving $p$-Hardy's inequality
JO  - Applicationes Mathematicae
PY  - 2014
SP  - 239
EP  - 246
VL  - 41
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am41-2-11/
DO  - 10.4064/am41-2-11
LA  - en
ID  - 10_4064_am41_2_11
ER  - 
%0 Journal Article
%A Abdelouahed El Khalil
%A My Driss Morchid Alaoui
%A Abdelfattah Touzani
%T On the spectrum of the $p$-biharmonic operator involving $p$-Hardy's inequality
%J Applicationes Mathematicae
%D 2014
%P 239-246
%V 41
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am41-2-11/
%R 10.4064/am41-2-11
%G en
%F 10_4064_am41_2_11
Abdelouahed El Khalil; My Driss Morchid Alaoui; Abdelfattah Touzani. On the spectrum of the $p$-biharmonic operator involving $p$-Hardy's inequality. Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 239-246. doi : 10.4064/am41-2-11. http://geodesic.mathdoc.fr/articles/10.4064/am41-2-11/

Cité par Sources :