On the spectrum of the $p$-biharmonic operator involving $p$-Hardy's inequality
Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 239-246

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper, we study the spectrum for the following eigenvalue problem with the $p$-biharmonic operator involving the Hardy term: $$\varDelta (|\varDelta u|^{p-2}\varDelta u)= \lambda \frac {|u|^{p-2}u}{\delta (x)^{2p}} \hbox { in } \varOmega , \ u\in W_0^{2,p}(\varOmega ).$$ By using the variational technique and the Hardy–Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.
DOI : 10.4064/am41-2-11
Keywords: paper study spectrum following eigenvalue problem p biharmonic operator involving hardy term vardelta vardelta p vardelta lambda frac p delta hbox varomega varomega using variational technique hardy rellich inequality prove above problem has least increasing sequence positive eigenvalues

Abdelouahed El Khalil 1 ; My Driss Morchid Alaoui 2 ; Abdelfattah Touzani 2

1 Department of Mathematics and Statistics College of Science Al-Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623, Saudi Arabia
2 Faculty of Sciences Dhar-Mahraz Department of Mathematics University Sidi Mohamed Ben Abdellah P.O. Box 1796 Atlas Fez 30000, Morocco
@article{10_4064_am41_2_11,
     author = {Abdelouahed El Khalil and My Driss Morchid Alaoui and Abdelfattah Touzani},
     title = {On the spectrum of the $p$-biharmonic operator involving $p${-Hardy's} inequality},
     journal = {Applicationes Mathematicae},
     pages = {239--246},
     publisher = {mathdoc},
     volume = {41},
     number = {2-3},
     year = {2014},
     doi = {10.4064/am41-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-2-11/}
}
TY  - JOUR
AU  - Abdelouahed El Khalil
AU  - My Driss Morchid Alaoui
AU  - Abdelfattah Touzani
TI  - On the spectrum of the $p$-biharmonic operator involving $p$-Hardy's inequality
JO  - Applicationes Mathematicae
PY  - 2014
SP  - 239
EP  - 246
VL  - 41
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am41-2-11/
DO  - 10.4064/am41-2-11
LA  - en
ID  - 10_4064_am41_2_11
ER  - 
%0 Journal Article
%A Abdelouahed El Khalil
%A My Driss Morchid Alaoui
%A Abdelfattah Touzani
%T On the spectrum of the $p$-biharmonic operator involving $p$-Hardy's inequality
%J Applicationes Mathematicae
%D 2014
%P 239-246
%V 41
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am41-2-11/
%R 10.4064/am41-2-11
%G en
%F 10_4064_am41_2_11
Abdelouahed El Khalil; My Driss Morchid Alaoui; Abdelfattah Touzani. On the spectrum of the $p$-biharmonic operator involving $p$-Hardy's inequality. Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 239-246. doi: 10.4064/am41-2-11

Cité par Sources :