Uniqueness of solutions for some degenerate nonlinear elliptic equations
Applicationes Mathematicae, Tome 41 (2014) no. 1, pp. 93-106
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the existence and uniqueness of solutions to the Dirichlet problem for a degenerate nonlinear elliptic equation $$ - \sum _{i,j=1}^nD_j(a_{ij}(x)D_iu(x)) + b(x)u(x) + \mathop {\rm div}\nolimits (\varPhi (u(x))) = g(x) - \sum
_{j=1}^n f_j(x) \ \text {on} \ \varOmega $$ in the setting of the space $H_0(\varOmega )$.
DOI :
10.4064/am41-1-8
Keywords:
investigate existence uniqueness solutions dirichlet problem degenerate nonlinear elliptic equation sum x mathop div nolimits varphi sum x text varomega setting space varomega
Affiliations des auteurs :
Albo Carlos Cavalheiro 1
@article{10_4064_am41_1_8,
author = {Albo Carlos Cavalheiro},
title = {Uniqueness of solutions for some degenerate nonlinear elliptic equations},
journal = {Applicationes Mathematicae},
pages = {93--106},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2014},
doi = {10.4064/am41-1-8},
zbl = {1316.35131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-1-8/}
}
TY - JOUR AU - Albo Carlos Cavalheiro TI - Uniqueness of solutions for some degenerate nonlinear elliptic equations JO - Applicationes Mathematicae PY - 2014 SP - 93 EP - 106 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am41-1-8/ DO - 10.4064/am41-1-8 LA - en ID - 10_4064_am41_1_8 ER -
Albo Carlos Cavalheiro. Uniqueness of solutions for some degenerate nonlinear elliptic equations. Applicationes Mathematicae, Tome 41 (2014) no. 1, pp. 93-106. doi: 10.4064/am41-1-8
Cité par Sources :