Orthogonal series estimation of band-limited regression functions
Applicationes Mathematicae, Tome 41 (2014) no. 1, pp. 51-65.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of nonparametric function fitting using the complete orthogonal system of Whittaker cardinal functions $s_k$, $k=0,\pm 1,\ldots ,$ for the observation model $y_j = f(u_j) + \eta _j $, $j=1,\ldots ,n$, is considered, where $f\in L^2(\mathbb {R})\cap BL(\varOmega )$ for $\varOmega >0$ is a band-limited function, $u_j$ are independent random variables uniformly distributed in the observation interval $[-T,T]$, $\eta _j$ are uncorrelated or correlated random variables with zero mean value and finite variance, independent of the observation points. Conditions for convergence and convergence rates of the integrated mean-square error $E\| f-\hat f_n\| ^2$ and the pointwise mean-square error $E(f(x)-\hat f_n(x))^2$ of the estimator $\hat f_n(x) = \sum _{k=-N(n)}^{N(n)}\hat c_ks_k(x)$ with coefficients $\hat c_k$, $k=-N(n),\ldots ,N(n)$, obtained by the Monte Carlo method are studied.
DOI : 10.4064/am41-1-5
Keywords: problem nonparametric function fitting using complete orthogonal system whittaker cardinal functions ldots observation model eta ldots considered where mathbb cap varomega varomega band limited function independent random variables uniformly distributed observation interval t eta uncorrelated correlated random variables zero mean value finite variance independent observation points conditions convergence convergence rates integrated mean square error f hat pointwise mean square error hat estimator hat sum n hat coefficients hat n ldots obtained monte carlo method studied

Waldemar Popiński 1

1 Space Research Centre Polish Academy of Sciences Bartycka 18a 00-716 Warszawa, Poland
@article{10_4064_am41_1_5,
     author = {Waldemar Popi\'nski},
     title = {Orthogonal series estimation
 of band-limited regression functions},
     journal = {Applicationes Mathematicae},
     pages = {51--65},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2014},
     doi = {10.4064/am41-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-1-5/}
}
TY  - JOUR
AU  - Waldemar Popiński
TI  - Orthogonal series estimation
 of band-limited regression functions
JO  - Applicationes Mathematicae
PY  - 2014
SP  - 51
EP  - 65
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am41-1-5/
DO  - 10.4064/am41-1-5
LA  - en
ID  - 10_4064_am41_1_5
ER  - 
%0 Journal Article
%A Waldemar Popiński
%T Orthogonal series estimation
 of band-limited regression functions
%J Applicationes Mathematicae
%D 2014
%P 51-65
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am41-1-5/
%R 10.4064/am41-1-5
%G en
%F 10_4064_am41_1_5
Waldemar Popiński. Orthogonal series estimation
 of band-limited regression functions. Applicationes Mathematicae, Tome 41 (2014) no. 1, pp. 51-65. doi : 10.4064/am41-1-5. http://geodesic.mathdoc.fr/articles/10.4064/am41-1-5/

Cité par Sources :