Estimation of a smoothness parameter by spline wavelets
Applicationes Mathematicae, Tome 40 (2013) no. 3, pp. 309-326.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the smoothness parameter of a function $f\in L^2(\mathbb {R})$ in terms of Besov spaces $B^s_{2,\infty }(\mathbb {R})$, \[ s^*(f)=\sup\{s>0: f\in B^s_{2,\infty }(\mathbb {R})\}. \] The existing results on estimation of smoothness [K. Dziedziul, M. Kucharska and B. Wolnik, J. Nonparametric Statist. 23 (2011)] employ the Haar basis and are limited to the case $0 s^*(f) 1/2$. Using $p$-regular ($p\geq 1$) spline wavelets with exponential decay we extend them to density functions with $0 s^*(f) p+1/2$. Applying the Franklin–Strömberg wavelet $p=1$, we prove that the presented estimator of $s^*(f)$ is consistent for piecewise constant functions. Furthermore, we show that the results for the Franklin–Strömberg wavelet can be generalised to any spline wavelet $(p\geq 1).$
DOI : 10.4064/am40-3-4
Keywords: consider smoothness parameter function mathbb terms besov spaces infty mathbb * sup infty mathbb existing results estimation smoothness dziedziul kucharska wolnik nbsp nonparametric statist employ haar basis limited * using p regular geq spline wavelets exponential decay extend density functions * applying franklin str mberg wavelet prove presented estimator * consistent piecewise constant functions furthermore results franklin str mberg wavelet generalised spline wavelet geq

Magdalena Meller 1 ; Natalia Jarzębkowska 1

1 Faculty of Applied Mathematics Technical University of Gdańsk G. Narutowicza 11/12 80-952 Gdańsk, Poland
@article{10_4064_am40_3_4,
     author = {Magdalena Meller and Natalia Jarz\k{e}bkowska},
     title = {Estimation of a smoothness parameter
 by spline wavelets},
     journal = {Applicationes Mathematicae},
     pages = {309--326},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2013},
     doi = {10.4064/am40-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am40-3-4/}
}
TY  - JOUR
AU  - Magdalena Meller
AU  - Natalia Jarzębkowska
TI  - Estimation of a smoothness parameter
 by spline wavelets
JO  - Applicationes Mathematicae
PY  - 2013
SP  - 309
EP  - 326
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am40-3-4/
DO  - 10.4064/am40-3-4
LA  - en
ID  - 10_4064_am40_3_4
ER  - 
%0 Journal Article
%A Magdalena Meller
%A Natalia Jarzębkowska
%T Estimation of a smoothness parameter
 by spline wavelets
%J Applicationes Mathematicae
%D 2013
%P 309-326
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am40-3-4/
%R 10.4064/am40-3-4
%G en
%F 10_4064_am40_3_4
Magdalena Meller; Natalia Jarzębkowska. Estimation of a smoothness parameter
 by spline wavelets. Applicationes Mathematicae, Tome 40 (2013) no. 3, pp. 309-326. doi : 10.4064/am40-3-4. http://geodesic.mathdoc.fr/articles/10.4064/am40-3-4/

Cité par Sources :