Estimation of a smoothness parameter
by spline wavelets
Applicationes Mathematicae, Tome 40 (2013) no. 3, pp. 309-326
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the smoothness parameter of a function $f\in L^2(\mathbb {R})$ in terms of Besov spaces $B^s_{2,\infty }(\mathbb {R})$, \[ s^*(f)=\sup\{s>0: f\in B^s_{2,\infty }(\mathbb {R})\}. \] The existing results on estimation of smoothness [K. Dziedziul, M. Kucharska and B. Wolnik,
J. Nonparametric Statist. 23 (2011)] employ the Haar basis and are limited to the case
$0 s^*(f) 1/2$. Using $p$-regular ($p\geq 1$) spline wavelets with
exponential decay we extend them to density functions with $0 s^*(f) p+1/2$. Applying the
Franklin–Strömberg wavelet $p=1$, we prove that the presented estimator of $s^*(f)$ is consistent
for piecewise constant functions. Furthermore, we show that the results for the Franklin–Strömberg
wavelet can be generalised to any spline wavelet $(p\geq 1).$
Keywords:
consider smoothness parameter function mathbb terms besov spaces infty mathbb * sup infty mathbb existing results estimation smoothness dziedziul kucharska wolnik nbsp nonparametric statist employ haar basis limited * using p regular geq spline wavelets exponential decay extend density functions * applying franklin str mberg wavelet prove presented estimator * consistent piecewise constant functions furthermore results franklin str mberg wavelet generalised spline wavelet geq
Affiliations des auteurs :
Magdalena Meller 1 ; Natalia Jarzębkowska 1
@article{10_4064_am40_3_4,
author = {Magdalena Meller and Natalia Jarz\k{e}bkowska},
title = {Estimation of a smoothness parameter
by spline wavelets},
journal = {Applicationes Mathematicae},
pages = {309--326},
year = {2013},
volume = {40},
number = {3},
doi = {10.4064/am40-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am40-3-4/}
}
TY - JOUR AU - Magdalena Meller AU - Natalia Jarzębkowska TI - Estimation of a smoothness parameter by spline wavelets JO - Applicationes Mathematicae PY - 2013 SP - 309 EP - 326 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am40-3-4/ DO - 10.4064/am40-3-4 LA - en ID - 10_4064_am40_3_4 ER -
Magdalena Meller; Natalia Jarzębkowska. Estimation of a smoothness parameter by spline wavelets. Applicationes Mathematicae, Tome 40 (2013) no. 3, pp. 309-326. doi: 10.4064/am40-3-4
Cité par Sources :