Inexact Newton method under weak and center-weak Lipschitz conditions
Applicationes Mathematicae, Tome 40 (2013) no. 2, pp. 237-258
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper develops semilocal convergence of Inexact Newton Method INM for approximating solutions of nonlinear equations in Banach space setting. We employ weak Lipschitz and center-weak Lipschitz conditions to perform the error analysis. The results obtained compare favorably with earlier ones in at least the case of Newton's Method (NM). Numerical examples, where our convergence criteria are satisfied but the earlier ones are not, are also explored.
DOI :
10.4064/am40-2-6
Keywords:
paper develops semilocal convergence nexact ewton ethod inm approximating solutions nonlinear equations banach space setting employ weak lipschitz center weak lipschitz conditions perform error analysis results obtained compare favorably earlier least ewtons ethod numerical examples where convergence criteria satisfied earlier explored
Affiliations des auteurs :
I. K. Argyros 1 ; S. K. Khattri 2
@article{10_4064_am40_2_6,
author = {I. K. Argyros and S. K. Khattri},
title = {Inexact {Newton} method under weak and center-weak {Lipschitz} conditions},
journal = {Applicationes Mathematicae},
pages = {237--258},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {2013},
doi = {10.4064/am40-2-6},
zbl = {1277.65039},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am40-2-6/}
}
TY - JOUR AU - I. K. Argyros AU - S. K. Khattri TI - Inexact Newton method under weak and center-weak Lipschitz conditions JO - Applicationes Mathematicae PY - 2013 SP - 237 EP - 258 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am40-2-6/ DO - 10.4064/am40-2-6 LA - en ID - 10_4064_am40_2_6 ER -
I. K. Argyros; S. K. Khattri. Inexact Newton method under weak and center-weak Lipschitz conditions. Applicationes Mathematicae, Tome 40 (2013) no. 2, pp. 237-258. doi: 10.4064/am40-2-6
Cité par Sources :