Integral representations of risk functions for basket derivatives
Applicationes Mathematicae, Tome 39 (2012) no. 4, pp. 489-514
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The risk minimizing problem
$\mathbf{E}[l((H-X_T^{x,\pi})^{+})]\overset{\pi}{\rightarrow}\min$
in the multidimensional Black–Scholes framework is studied. Specific
formulas for the minimal risk function and the cost reduction
function for basket derivatives are shown.
Explicit integral representations for the risk functions for $l(x)=x$ and $l(x)=x^p$,
with $p>1$ for digital, quantos, outperformance and spread options
are derived.
DOI :
10.4064/am39-4-6
Keywords:
risk minimizing problem mathbf h x overset rightarrow min multidimensional black scholes framework studied specific formulas minimal risk function cost reduction function basket derivatives shown explicit integral representations risk functions digital quantos outperformance spread options derived
Affiliations des auteurs :
Michał Barski  1
@article{10_4064_am39_4_6,
author = {Micha{\l} Barski},
title = {Integral representations of risk functions for basket derivatives},
journal = {Applicationes Mathematicae},
pages = {489--514},
year = {2012},
volume = {39},
number = {4},
doi = {10.4064/am39-4-6},
zbl = {1254.91718},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am39-4-6/}
}
Michał Barski. Integral representations of risk functions for basket derivatives. Applicationes Mathematicae, Tome 39 (2012) no. 4, pp. 489-514. doi: 10.4064/am39-4-6
Cité par Sources :