Evolution in a migrating population model
Applicationes Mathematicae, Tome 39 (2012) no. 3, pp. 305-313
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a model of migrating population occupying a compact domain $\varOmega $ in the plane. We assume the Malthusian growth of the population at each point $x\in \varOmega $ and that the mobility of individuals depends on $x\in \varOmega $. The evolution of the probability density $u(x,t)$ that a randomly chosen individual occupies $x\in \varOmega $ at time $t$ is described by the nonlocal linear equation $u_t=\int _\varOmega \varphi (y)u(y,t)
\, dy-\varphi (x)u(x,t)$, where $\varphi (x)$ is a given function characterizing the mobility of individuals living at $x$. We show that the asymptotic behaviour of $u(x,t)$ as $t\to \infty $ depends on the properties of $\varphi $ in the vicinity of its zeros.
DOI :
10.4064/am39-3-5
Keywords:
consider model migrating population occupying compact domain varomega plane assume malthusian growth population each point varomega mobility individuals depends varomega evolution probability density randomly chosen individual occupies varomega time described nonlocal linear equation int varomega varphi t dy varphi t where varphi given function characterizing mobility individuals living asymptotic behaviour infty depends properties varphi vicinity its zeros
Affiliations des auteurs :
Włodzimierz Bąk 1 ; Tadeusz Nadzieja 1
@article{10_4064_am39_3_5,
author = {W{\l}odzimierz B\k{a}k and Tadeusz Nadzieja},
title = {Evolution in a migrating population model},
journal = {Applicationes Mathematicae},
pages = {305--313},
year = {2012},
volume = {39},
number = {3},
doi = {10.4064/am39-3-5},
zbl = {1251.35170},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am39-3-5/}
}
Włodzimierz Bąk; Tadeusz Nadzieja. Evolution in a migrating population model. Applicationes Mathematicae, Tome 39 (2012) no. 3, pp. 305-313. doi: 10.4064/am39-3-5
Cité par Sources :