On the Halley method in Banach spaces
Applicationes Mathematicae, Tome 39 (2012) no. 2, pp. 243-255.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide a semilocal convergence analysis for Halley's method using convex majorants in order to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. Our results reduce and improve earlier ones in special cases.
DOI : 10.4064/am39-2-9
Keywords: provide semilocal convergence analysis halleys method using convex majorants order approximate locally unique solution nonlinear operator equation banach space setting results reduce improve earlier special cases

Ioannis K. Argyros 1 ; Hongmin Ren 2

1 Department of Mathematics Sciences Cameron University Lawton, OK 73505, U.S.A.
2 College of Information and Electronics Hangzhou Polytechnic Hangzhou 31140 Zhejiang, P.R. China
@article{10_4064_am39_2_9,
     author = {Ioannis K. Argyros and Hongmin Ren},
     title = {On the {Halley} method in {Banach} spaces},
     journal = {Applicationes Mathematicae},
     pages = {243--255},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2012},
     doi = {10.4064/am39-2-9},
     zbl = {1243.65060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am39-2-9/}
}
TY  - JOUR
AU  - Ioannis K. Argyros
AU  - Hongmin Ren
TI  - On the Halley method in Banach spaces
JO  - Applicationes Mathematicae
PY  - 2012
SP  - 243
EP  - 255
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am39-2-9/
DO  - 10.4064/am39-2-9
LA  - en
ID  - 10_4064_am39_2_9
ER  - 
%0 Journal Article
%A Ioannis K. Argyros
%A Hongmin Ren
%T On the Halley method in Banach spaces
%J Applicationes Mathematicae
%D 2012
%P 243-255
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am39-2-9/
%R 10.4064/am39-2-9
%G en
%F 10_4064_am39_2_9
Ioannis K. Argyros; Hongmin Ren. On the Halley method in Banach spaces. Applicationes Mathematicae, Tome 39 (2012) no. 2, pp. 243-255. doi : 10.4064/am39-2-9. http://geodesic.mathdoc.fr/articles/10.4064/am39-2-9/

Cité par Sources :