The shortest confidence interval for
the probability of success
in a negative binomial model
Applicationes Mathematicae, Tome 39 (2012) no. 2, pp. 143-149
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The existence of the shortest confidence interval for the probability of success in a negative binomial distribution is shown. The method of obtaining such an interval is presented as well. The interval obtained is compared with the Clopper–Pearson shortest confidence interval for the probability in the binomial model.
Keywords:
existence shortest confidence interval probability success negative binomial distribution shown method obtaining interval presented interval obtained compared clopper pearson shortest confidence interval probability binomial model
Affiliations des auteurs :
Wojciech Zieliński 1
@article{10_4064_am39_2_3,
author = {Wojciech Zieli\'nski},
title = {The shortest confidence interval for
the probability of success
in a negative binomial model},
journal = {Applicationes Mathematicae},
pages = {143--149},
year = {2012},
volume = {39},
number = {2},
doi = {10.4064/am39-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am39-2-3/}
}
TY - JOUR AU - Wojciech Zieliński TI - The shortest confidence interval for the probability of success in a negative binomial model JO - Applicationes Mathematicae PY - 2012 SP - 143 EP - 149 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am39-2-3/ DO - 10.4064/am39-2-3 LA - en ID - 10_4064_am39_2_3 ER -
Wojciech Zieliński. The shortest confidence interval for the probability of success in a negative binomial model. Applicationes Mathematicae, Tome 39 (2012) no. 2, pp. 143-149. doi: 10.4064/am39-2-3
Cité par Sources :