Hurwicz's estimator of the autoregressive model with non-normal innovations
Applicationes Mathematicae, Tome 38 (2011) no. 2, pp. 211-218
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using the Bahadur representation of a sample quantile for $m$-dependent and strong mixing random variables, we establish the asymptotic distribution of the Hurwicz estimator for the coefficient of autoregression in a linear process with innovations belonging to the domain of attraction of an $\alpha $-stable law ($1\alpha 2$). The present paper extends Hurwicz's result to the autoregressive model.
DOI :
10.4064/am38-2-6
Keywords:
using bahadur representation sample quantile m dependent strong mixing random variables establish asymptotic distribution hurwicz estimator coefficient autoregression linear process innovations belonging domain attraction alpha stable law alpha present paper extends hurwiczs result autoregressive model
Affiliations des auteurs :
Youcef Berkoun 1 ; Hocine Fellag 1
@article{10_4064_am38_2_6,
author = {Youcef Berkoun and Hocine Fellag},
title = {Hurwicz's estimator of the autoregressive model with non-normal innovations},
journal = {Applicationes Mathematicae},
pages = {211--218},
year = {2011},
volume = {38},
number = {2},
doi = {10.4064/am38-2-6},
zbl = {1213.62137},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am38-2-6/}
}
TY - JOUR AU - Youcef Berkoun AU - Hocine Fellag TI - Hurwicz's estimator of the autoregressive model with non-normal innovations JO - Applicationes Mathematicae PY - 2011 SP - 211 EP - 218 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am38-2-6/ DO - 10.4064/am38-2-6 LA - en ID - 10_4064_am38_2_6 ER -
Youcef Berkoun; Hocine Fellag. Hurwicz's estimator of the autoregressive model with non-normal innovations. Applicationes Mathematicae, Tome 38 (2011) no. 2, pp. 211-218. doi: 10.4064/am38-2-6
Cité par Sources :