Local analysis of a cubically convergent method
for variational inclusions
Applicationes Mathematicae, Tome 38 (2011) no. 2, pp. 183-191
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This
paper deals with variational inclusions of the form $0\in
\varphi(x)+F(x)$ where $\varphi$ is a single-valued function
admitting a second order Fréchet derivative and $F$ is a
set-valued map from $\Bbb R^q$ to the closed subsets of $\Bbb R^q$. When a
solution $\bar z$ of the previous inclusion satisfies some
semistability properties, we obtain local superquadratic or cubic
convergent sequences.
Keywords:
paper deals variational inclusions form varphi where varphi single valued function admitting second order chet derivative set valued map bbb closed subsets bbb solution bar previous inclusion satisfies semistability properties obtain local superquadratic cubic convergent sequences
Affiliations des auteurs :
Steeve Burnet 1 ; Alain Pietrus 1
@article{10_4064_am38_2_4,
author = {Steeve Burnet and Alain Pietrus},
title = {Local analysis of a cubically convergent method
for variational inclusions},
journal = {Applicationes Mathematicae},
pages = {183--191},
year = {2011},
volume = {38},
number = {2},
doi = {10.4064/am38-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am38-2-4/}
}
TY - JOUR AU - Steeve Burnet AU - Alain Pietrus TI - Local analysis of a cubically convergent method for variational inclusions JO - Applicationes Mathematicae PY - 2011 SP - 183 EP - 191 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am38-2-4/ DO - 10.4064/am38-2-4 LA - en ID - 10_4064_am38_2_4 ER -
Steeve Burnet; Alain Pietrus. Local analysis of a cubically convergent method for variational inclusions. Applicationes Mathematicae, Tome 38 (2011) no. 2, pp. 183-191. doi: 10.4064/am38-2-4
Cité par Sources :