Local analysis of a cubically convergent method for variational inclusions
Applicationes Mathematicae, Tome 38 (2011) no. 2, pp. 183-191.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper deals with variational inclusions of the form $0\in \varphi(x)+F(x)$ where $\varphi$ is a single-valued function admitting a second order Fréchet derivative and $F$ is a set-valued map from $\Bbb R^q$ to the closed subsets of $\Bbb R^q$. When a solution $\bar z$ of the previous inclusion satisfies some semistability properties, we obtain local superquadratic or cubic convergent sequences.
DOI : 10.4064/am38-2-4
Keywords: paper deals variational inclusions form varphi where varphi single valued function admitting second order chet derivative set valued map bbb closed subsets bbb solution bar previous inclusion satisfies semistability properties obtain local superquadratic cubic convergent sequences

Steeve Burnet 1 ; Alain Pietrus 1

1 Laboratoire LAMIA, EA 4540 Département de Mathématiques et Informatique Université des Antilles et de la Guyane Campus de Fouillole 97159 Pointe-à-Pitre, France
@article{10_4064_am38_2_4,
     author = {Steeve Burnet and Alain Pietrus},
     title = {Local analysis of a cubically convergent method
 for variational inclusions},
     journal = {Applicationes Mathematicae},
     pages = {183--191},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2011},
     doi = {10.4064/am38-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am38-2-4/}
}
TY  - JOUR
AU  - Steeve Burnet
AU  - Alain Pietrus
TI  - Local analysis of a cubically convergent method
 for variational inclusions
JO  - Applicationes Mathematicae
PY  - 2011
SP  - 183
EP  - 191
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am38-2-4/
DO  - 10.4064/am38-2-4
LA  - en
ID  - 10_4064_am38_2_4
ER  - 
%0 Journal Article
%A Steeve Burnet
%A Alain Pietrus
%T Local analysis of a cubically convergent method
 for variational inclusions
%J Applicationes Mathematicae
%D 2011
%P 183-191
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am38-2-4/
%R 10.4064/am38-2-4
%G en
%F 10_4064_am38_2_4
Steeve Burnet; Alain Pietrus. Local analysis of a cubically convergent method
 for variational inclusions. Applicationes Mathematicae, Tome 38 (2011) no. 2, pp. 183-191. doi : 10.4064/am38-2-4. http://geodesic.mathdoc.fr/articles/10.4064/am38-2-4/

Cité par Sources :