On the theory of thermoelasticity
Applicationes Mathematicae, Tome 38 (2011) no. 2, pp. 173-182
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to prove some properties of the solution to the Cauchy problem for the system of partial differential equations describing thermoelasticity of nonsimple materials proposed by
D. Iesan. Explicit formulas for the Fourier transform and some estimates in Sobolev spaces for the solution of the Cauchy problem are proved.
DOI :
10.4064/am38-2-3
Keywords:
paper prove properties solution cauchy problem system partial differential equations describing thermoelasticity nonsimple materials proposed iesan explicit formulas fourier transform estimates sobolev spaces solution cauchy problem proved
Affiliations des auteurs :
Henryk Kołakowski 1 ; Jarosław Łazuka 1
@article{10_4064_am38_2_3,
author = {Henryk Ko{\l}akowski and Jaros{\l}aw {\L}azuka},
title = {On the theory of thermoelasticity},
journal = {Applicationes Mathematicae},
pages = {173--182},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2011},
doi = {10.4064/am38-2-3},
zbl = {1215.35155},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am38-2-3/}
}
Henryk Kołakowski; Jarosław Łazuka. On the theory of thermoelasticity. Applicationes Mathematicae, Tome 38 (2011) no. 2, pp. 173-182. doi: 10.4064/am38-2-3
Cité par Sources :