Variance function estimation via model selection
Applicationes Mathematicae, Tome 37 (2010) no. 4, pp. 387-411.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of estimating an unknown variance function in a random design Gaussian heteroscedastic regression model is considered. Both the regression function and the logarithm of the variance function are modelled by piecewise polynomials. A finite collection of such parametric models based on a family of partitions of support of an explanatory variable is studied. Penalized model selection criteria as well as post-model-selection estimates are introduced based on Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML) methods of estimation of the parameters of the models. The estimators are defined as ML or REML estimators in the models with dimensions determined by respective selection rules. Some encouraging simulation results are presented and consistency results on the solution pertaining to ML estimation for this approach are proved.
DOI : 10.4064/am37-4-1
Keywords: problem estimating unknown variance function random design gaussian heteroscedastic regression model considered regression function logarithm variance function modelled piecewise polynomials finite collection parametric models based family partitions support explanatory variable studied penalized model selection criteria post model selection estimates introduced based maximum likelihood restricted maximum likelihood reml methods estimation parameters models estimators defined reml estimators models dimensions determined respective selection rules encouraging simulation results presented consistency results solution pertaining estimation approach proved

Teresa Ledwina 1 ; Jan Mielniczuk 2

1 Institute of Mathematics Polish Academy of Sciences Kopernika 18 51-617 Wrocław, Poland
2 Institute of Computer Science Ordona 21 01-237 Warszawa, Poland and Warsaw University of Technology Plac Politechniki 1 00-661 Warszawa, Poland
@article{10_4064_am37_4_1,
     author = {Teresa Ledwina and Jan Mielniczuk},
     title = {Variance function estimation via
 model selection},
     journal = {Applicationes Mathematicae},
     pages = {387--411},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2010},
     doi = {10.4064/am37-4-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-4-1/}
}
TY  - JOUR
AU  - Teresa Ledwina
AU  - Jan Mielniczuk
TI  - Variance function estimation via
 model selection
JO  - Applicationes Mathematicae
PY  - 2010
SP  - 387
EP  - 411
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am37-4-1/
DO  - 10.4064/am37-4-1
LA  - en
ID  - 10_4064_am37_4_1
ER  - 
%0 Journal Article
%A Teresa Ledwina
%A Jan Mielniczuk
%T Variance function estimation via
 model selection
%J Applicationes Mathematicae
%D 2010
%P 387-411
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am37-4-1/
%R 10.4064/am37-4-1
%G en
%F 10_4064_am37_4_1
Teresa Ledwina; Jan Mielniczuk. Variance function estimation via
 model selection. Applicationes Mathematicae, Tome 37 (2010) no. 4, pp. 387-411. doi : 10.4064/am37-4-1. http://geodesic.mathdoc.fr/articles/10.4064/am37-4-1/

Cité par Sources :