Global well-posedness and blow up for
the nonlinear fractional beam equations
Applicationes Mathematicae, Tome 37 (2010) no. 3, pp. 353-373
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.
Keywords:
establish strichartz estimates linear fractional beam equations besov spaces using these estimates obtain global well posedness subcritical critical defocusing fractional beam equations course assume small initial critical addition convexity method blow occurs focusing fractional beam equations negative energy
Affiliations des auteurs :
Shouquan Ma 1 ; Guixiang Xu 2
@article{10_4064_am37_3_6,
author = {Shouquan Ma and Guixiang Xu},
title = {Global well-posedness and blow up for
the nonlinear fractional beam equations},
journal = {Applicationes Mathematicae},
pages = {353--373},
year = {2010},
volume = {37},
number = {3},
doi = {10.4064/am37-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-3-6/}
}
TY - JOUR AU - Shouquan Ma AU - Guixiang Xu TI - Global well-posedness and blow up for the nonlinear fractional beam equations JO - Applicationes Mathematicae PY - 2010 SP - 353 EP - 373 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am37-3-6/ DO - 10.4064/am37-3-6 LA - en ID - 10_4064_am37_3_6 ER -
Shouquan Ma; Guixiang Xu. Global well-posedness and blow up for the nonlinear fractional beam equations. Applicationes Mathematicae, Tome 37 (2010) no. 3, pp. 353-373. doi: 10.4064/am37-3-6
Cité par Sources :