Regularity properties of the attractor to the Navier–Stokes equations
Applicationes Mathematicae, Tome 37 (2010) no. 3, pp. 341-351.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Existence of a global attractor for the Navier–Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has been shown already. In this paper we prove the higher regularity of the attractor.
DOI : 10.4064/am37-3-5
Keywords: existence global attractor navier stokes equations describing motion incompressible viscous fluid cylindrical pipe has shown already paper prove higher regularity attractor

Piotr Kacprzyk 1

1 Institute of Mathematics and Cryptology Cybernetics Faculty Military University of Technology Kaliskiego 2 00-908 Warszawa, Poland
@article{10_4064_am37_3_5,
     author = {Piotr Kacprzyk},
     title = {Regularity properties of the attractor to the {Navier{\textendash}Stokes} equations},
     journal = {Applicationes Mathematicae},
     pages = {341--351},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2010},
     doi = {10.4064/am37-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-3-5/}
}
TY  - JOUR
AU  - Piotr Kacprzyk
TI  - Regularity properties of the attractor to the Navier–Stokes equations
JO  - Applicationes Mathematicae
PY  - 2010
SP  - 341
EP  - 351
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am37-3-5/
DO  - 10.4064/am37-3-5
LA  - en
ID  - 10_4064_am37_3_5
ER  - 
%0 Journal Article
%A Piotr Kacprzyk
%T Regularity properties of the attractor to the Navier–Stokes equations
%J Applicationes Mathematicae
%D 2010
%P 341-351
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am37-3-5/
%R 10.4064/am37-3-5
%G en
%F 10_4064_am37_3_5
Piotr Kacprzyk. Regularity properties of the attractor to the Navier–Stokes equations. Applicationes Mathematicae, Tome 37 (2010) no. 3, pp. 341-351. doi : 10.4064/am37-3-5. http://geodesic.mathdoc.fr/articles/10.4064/am37-3-5/

Cité par Sources :