Existence of solutions to the Poisson equation in $L_2$-weighted spaces
Applicationes Mathematicae, Tome 37 (2010) no. 3, pp. 309-323
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the Poisson equation with the Dirichlet and the Neumann boundary conditions in weighted Sobolev spaces. The weight is a positive power of the distance to a distinguished plane. We prove the existence of solutions in a suitably defined weighted space.
Keywords:
consider poisson equation dirichlet neumann boundary conditions weighted sobolev spaces weight positive power distance distinguished plane prove existence solutions suitably defined weighted space
Affiliations des auteurs :
Joanna Rencławowicz 1 ; Wojciech M. Zajączkowski 2
@article{10_4064_am37_3_3,
author = {Joanna Renc{\l}awowicz and Wojciech M. Zaj\k{a}czkowski},
title = {Existence of solutions to the {Poisson} equation in $L_2$-weighted spaces},
journal = {Applicationes Mathematicae},
pages = {309--323},
year = {2010},
volume = {37},
number = {3},
doi = {10.4064/am37-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-3-3/}
}
TY - JOUR AU - Joanna Rencławowicz AU - Wojciech M. Zajączkowski TI - Existence of solutions to the Poisson equation in $L_2$-weighted spaces JO - Applicationes Mathematicae PY - 2010 SP - 309 EP - 323 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am37-3-3/ DO - 10.4064/am37-3-3 LA - en ID - 10_4064_am37_3_3 ER -
%0 Journal Article %A Joanna Rencławowicz %A Wojciech M. Zajączkowski %T Existence of solutions to the Poisson equation in $L_2$-weighted spaces %J Applicationes Mathematicae %D 2010 %P 309-323 %V 37 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/am37-3-3/ %R 10.4064/am37-3-3 %G en %F 10_4064_am37_3_3
Joanna Rencławowicz; Wojciech M. Zajączkowski. Existence of solutions to the Poisson equation in $L_2$-weighted spaces. Applicationes Mathematicae, Tome 37 (2010) no. 3, pp. 309-323. doi: 10.4064/am37-3-3
Cité par Sources :