Note on the variance of the sum of
Gaussian functionals
Applicationes Mathematicae, Tome 37 (2010) no. 2, pp. 231-236
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $(X_i, i=1,2,\dots )$ be a Gaussian sequence with $X_i\in N(0,1)$ for each $i$ and suppose its correlation matrix $R=(\rho _{ij})_{i,j\geq 1}$ is the matrix of some linear operator $R:l_2\rightarrow l_2$. Then for $f_i\in L^2(\mu )$, $i=1,2,\dots ,$ where $\mu $ is the standard normal distribution, we estimate the variation of the sum of the Gaussian functionals $f_i(X_i)$, $i=1,2,\dots .$
Keywords:
dots gaussian sequence each suppose its correlation matrix rho geq matrix linear operator rightarrow dots where standard normal distribution estimate variation sum gaussian functionals i dots
Affiliations des auteurs :
Marek Beśka 1
@article{10_4064_am37_2_7,
author = {Marek Be\'ska},
title = {Note on the variance of the sum of
{Gaussian} functionals},
journal = {Applicationes Mathematicae},
pages = {231--236},
year = {2010},
volume = {37},
number = {2},
doi = {10.4064/am37-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-2-7/}
}
Marek Beśka. Note on the variance of the sum of Gaussian functionals. Applicationes Mathematicae, Tome 37 (2010) no. 2, pp. 231-236. doi: 10.4064/am37-2-7
Cité par Sources :