Existence of solutions to the (rot, div)-system in $L_p$-weighted spaces
Applicationes Mathematicae, Tome 37 (2010) no. 2, pp. 127-142
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The existence of solutions to the elliptic problem $\mathop{\rm rot} v=w$, $\mathop{\rm div} v=0$
in a bounded domain ${\mit\Omega}\subset\Bbb R^3$, $v\cdot\bar n|_S=0$,
$S=\partial{\mit\Omega}$ in weighted
$L_p$-Sobolev spaces is proved. It is assumed that
an axis $L$ crosses $\mit\Omega$ and the weight is a negative power function of the
distance to the axis. The main part of the proof is devoted to examining
solutions of the problem in a neighbourhood of $L$. The existence in $\mit\Omega$
follows from the technique of regularization.
Keywords:
existence solutions elliptic problem mathop rot mathop div bounded domain mit omega subset bbb cdot bar partial mit omega weighted p sobolev spaces proved assumed axis crosses mit omega weight negative power function distance axis main part proof devoted examining solutions problem neighbourhood existence mit omega follows technique regularization
Affiliations des auteurs :
Wojciech M. Zajączkowski 1
@article{10_4064_am37_2_1,
author = {Wojciech M. Zaj\k{a}czkowski},
title = {Existence of solutions to the (rot, div)-system in $L_p$-weighted spaces},
journal = {Applicationes Mathematicae},
pages = {127--142},
year = {2010},
volume = {37},
number = {2},
doi = {10.4064/am37-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-2-1/}
}
TY - JOUR AU - Wojciech M. Zajączkowski TI - Existence of solutions to the (rot, div)-system in $L_p$-weighted spaces JO - Applicationes Mathematicae PY - 2010 SP - 127 EP - 142 VL - 37 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am37-2-1/ DO - 10.4064/am37-2-1 LA - en ID - 10_4064_am37_2_1 ER -
Wojciech M. Zajączkowski. Existence of solutions to the (rot, div)-system in $L_p$-weighted spaces. Applicationes Mathematicae, Tome 37 (2010) no. 2, pp. 127-142. doi: 10.4064/am37-2-1
Cité par Sources :